Development of methods for autonomous implementation of technological operations by manipulative underwater vehicles

Cover Page

Cite item

Full Text

Abstract

The article is devoted to the development of a set of methods designed to solve the urgent task of increasing the efficiency of performing expensive manipulative technological operations in the depths of the World Ocean using unmanned underwater vehicles (UUV) equipped with multilink manipulators (MM). Based on the proposed methods, systems for processing sensory information, recognizing the environment, target (control) signals formation and dynamic control of the UUV with MM are synthesized. Due to the coordinated operation of these systems, successful autonomous execution of contact manipulation operations in the UUV hovering mode above or near marine objects is ensured. The developed systems were implemented in hardware and software. In addition, the results of basin experiments and semi-natural modeling confirmed the operability and high efficiency of the proposed methods that expand the UUV functionality.

Full Text

Restricted Access

About the authors

Alexander Y. Konoplin

Academician M. D. Ageev Institute of Marine Technology Problems, FEB RAS

Author for correspondence.
Email: kayur-prim@mail.ru
ORCID iD: 0000-0001-7554-1002

Candidate of Sciences in Technology, Leading Scientific Researcher

Russian Federation, Vladivostok

Nikita A. Krasavin

Academician M. D. Ageev Institute of Marine Technology Problems, FEB RAS

Email: krasyava061@gmail.com
ORCID iD: 0000-0003-1102-5409

Scientific Researcher

Russian Federation, Vladivostok

Alexander P. Yurmanov

Academician M. D. Ageev Institute of Marine Technology Problems, FEB RAS

Email: yurmanov_a@mail.ru
ORCID iD: 0000-0001-6849-3700

Scientific Researcher

Russian Federation, Vladivostok

Pavel A. Piatavin

Academician M. D. Ageev Institute of Marine Technology Problems, FEB RAS

Email: mcmaster988@gmail.com
ORCID iD: 0000-0002-0812-808X

Scientific Researcher

Russian Federation, Vladivostok

Vladimir V. Kostenko

Academician M. D. Ageev Institute of Marine Technology Problems, FEB RAS

Email: kosten.ko@mail.ru
ORCID iD: 0000-0002-3821-3787

Candidate of Sciences in Technology, Leading Scientific Researcher

Russian Federation, Vladivostok

Anna Y. Bykanova

Academician M. D. Ageev Institute of Marine Technology Problems, FEB RAS

Email: vladianna@mail.ru
ORCID iD: 0000-0002-3040-1345

Candidate of Sciences in Technology, Senior Scientific Researcher

Russian Federation, Vladivostok

References

  1. Filaretov V. F., Yuhimec D. A. Osobennosti sinteza vysokotochnykh sistem upravleniya skorostnym dvizheniem i stabilizatsiei podvodnykh apparatov v prostranstve = [Features of synthesis of high-precision control systems for high-speed movement and stabilization of underwater vehicles in space]. Vladivostok: Dal’nauka; 2016. 400 p. (In Russ.).
  2. Manley J. E., Halpin S., Radford N., Ondler M. Aquanaut: A new tool for subsea inspection and intervention. In: OCEANS2018 MTS/IEEE Charleston. Charleston, SC, USA; 2018. P. 1–4. doi: 10.1109/OCEANS.2018.8604508.
  3. Marani G., Choi S. K., Yuh J. Underwater autonomous manipulation for intervention missions AUVs. Ocean Engineering. 2009;36(1):15–23. doi: 10.1016/j.oceaneng.2008.08.007.
  4. Cao H., Chen X., He Y., Zhao X. Dynamic Adaptive Hybrid Impedance Control for Dynamic Contact Force Tracking in Uncertain Environments. IEEE Access. 2019; 7:83162–83174. doi: 10.1109/ACCESS.2019.2924696.
  5. Cieslak P., Ridao P., Giergiel M. Autonomous Underwater Panel Operation by GIRONA500 UVMS: A Practical Approach to Autonomous Underwater Manipulation. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA; 2015. P. 529–536. doi: 10.1109/ICRA.2015.7139230.
  6. Kazanin A. G., Kazanin G. S., Ivanov G. I., Sarkisyan M. V. Innovatsionnye tekhnologii pri vypolnenii inzhenerno-geologicheskikh rabot na arkticheskom shel’fe Rossii = [Innovative technologies in the performance of engineering and geological works on the Arctic shelf of Russia]. Nauchnyi zhurnal rossiiskogo gazovogo obshchestva. 2016;(4):25–30. (In Russ.).
  7. Sivčev S., Rossi M., Coleman J., Dooly G., Omerdić E., Toal D. Fully automatic visual servoing control for work-class marine intervention ROVs. Control Engineering Practice. 2018; 74:153–167. doi: 10.1016/j.conengprac.2018.03.005.
  8. Youakim D., Dornbush A., Likhachev M., Ridao P. Motion planning for an underwater mobile manipulator by exploiting loose coupling. In: 2018 IEEE/RSJ International conference on intelligent robots and systems (IROS). Madrid, Spain; 2018. P. 7164–7171. doi: 10.1109/IROS.2018.8593604.
  9. Yu L., Yang E., Ren P. et al. Inspection robots in oil and gas industry: a review of current solutions and future trends. In: 2019 25th International Conference on Automation and Computing (ICAC). Lancaster, United Kingdom; 2019. P. 1–6. doi: 10.23919/IConAC.2019.8895089.
  10. Antonelli G. Underwater robots. 3rd ed. In: Springer tracts in advanced robotics. Vol. 96. Switzerland: Springer International Publishing; 2014. 279 p. doi: 10.1007/978-3-319-02877-4.
  11. Penalver A., Perez J., Fernandez J. J., Sales J., Sanz P. J., Garcia J. C., Fornas D., Marin R. Visually-guided manipulation techniques for robotic autonomous underwater panel interventions. Annual Reviews in Control. 2015; 40:201–211. doi: 10.1016/j.arcontrol.2015.09.012.
  12. Guerneve T., Subr K., Petillot Y. Three-dimensional reconstruction of underwater objects using wide-aperture imaging SONAR. Journal of Field Robotics. 2018;35(6):890–905. DOI: doi.org/10.1002/rob.21783.
  13. Filaretov V. F., Konoplin A. Yu., Konoplin N. Yu. Sistema dlya avtomaticheskogo vypolneniya manipulyatsionnykh operatsii s pomoshch’yu podvodnogo robota = [A system for automatic manipulation operations with the help of an underwater robot]. Mekhatronika, avtomatizatsiya, upravlenie. 2017;(8):543–549. (In Russ.). doi: 10.17587/mau.18.543-549.
  14. Boreyko A.A, Vorontsov A. V., Kushnerik A.A, Shcherbatyuk A. F. Algoritmy obrabotki videoizobrazhenii dlya resheniya nekotorykh zadach upravleniya i navigatsii avtonomnykh neobitaemykh podvodnykh apparatov = [Video image processing algorithms for solving some control and navigation tasks of autonomous uninhabited underwater vehicles]. Underwater investigations and robotics. 2010;(1):29–39. (In Russ.).
  15. Filaretov V. F., Zuev A. V., Gubankov A. S. Upravlenie manipulyatorami pri vypolnenii razlichnykh tekhnologicheskikh operatsii = [Manipulator control when performing various technological operations]. Мoscow: Nauka; 2018. 232 p. (In Russ.).
  16. Konoplin A. Yu., Yurmanov A. P., Krasavin N. A., Piatavin P. A. Razrabotka, programmnaya realizatsiya i issledovanie sistemy upravleniya mnogozvennymi manipulyatorami neobitaemykh podvodnykh apparatov pri dinamicheskom pozitsionirovanii nad morskimi ob”ektami = [Development, software implementation, and research of multilink manipulator control system for UUV in dynamic positioning mode above underwater objects]. Underwater investigations and robotics. 2021;(3):4–15. (In Russ.). doi: 10.37102/1992-4429_2021_37_03_01.
  17. Konoplin A. Yu., Yurmanov A. P., Krasavin N. A., Piatavin P. A., Katsurin A. A. Sistema pozitsionno-silovogo upravleniya podvodnymi apparatami s mnogozvennymi manipulyatorami dlya vypolneniya kontaktnykh manipulyatsionnykh operatsii = [System of position/force control of underwater vehicles with multi-link manipulators for performing contact manipulation operations]. Underwater investigations and robotics. 2022;(4):40–52. (In Russ.). doi: 10.37102/1992-4429_2022_42_04_04.
  18. Leabourne K. N., Rock S. M. Model development of an underwater manipulator for coordinated arm-vehicle control. In: OCEANS ‘98 Conference Proceedings. Vol. 2. Nice, France; 1998. P. 941–946. doi: 10.1109/OCEANS.1998.724376.
  19. McLain T.W., Rock S. M., Lee M. J. Experiments in the coordinated control of an underwater arm/vehicle system. Autonomous Robots. 1996;3(2–3):213–232. doi: 10.1007/BF00141156.
  20. Kostenko V. V., Bykanova A. Yu., Tolstonogov A. Yu. Developing the multilink manipulator system for an autonomous underwater vehicle. In: 2022 International Conference on Ocean Studies (ICOS). Vladivostok, Russian Federation; 2022. P. 45–50. doi: 10.1109/ICOS55803.2022.10033371.
  21. Babaev R. A., Borovik A. I., Vaulin Yu.V., Eliseenko G. D., Mikhailov D. N., Naidenko N. A. Primenenie ANPA MMT-3500 dlya nauchnykh issledovanii v Atlanticheskom sektore Antarktiki = [Application of AUV MMT-3500 for scientific research in the Atlantic sector of Antarctica]. Underwater investigations and robotics. 2022;(3):15–32. (In. Russ.). doi: 10.37102/1992-4429_2022_41_03_02.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Combination of point clouds Ci and Ciʹ (a) and the intersection point of the verification trajectory with the triangulation surfaces (b)

Download (203KB)
3. Fig. 2. Experimental setup (a) and the results obtained with its help (b)

Download (219KB)
4. Fig. 3. Point cloud of the object (a), superimposed trajectory (b)

Download (320KB)
5. Fig. 4. NPA performing a contact operation; directions of action of force and moment vectors during contact of the working tool with the surface of the work object

Download (116KB)
6. Fig. 5. MM performing cleaning of an object in the longitudinal (a) and transverse (c) planes, and the components of the vector force acting on the tool during movement along a straight line (b) and a semicircle (d)

Download (169KB)
7. Fig. 6. NPA MMT-3500, equipped with MM

Download (160KB)

Copyright (c) 2024 Russian Academy of Sciences