Series of formulas for bhattacharyya parameters in the theory of polar codes
- Autores: Kolesnikov S.G1, Leontiev V.M1
-
Afiliações:
- Siberian Federal University
- Edição: Volume 59, Nº 1 (2023)
- Páginas: 3-16
- Seção: Articles
- URL: https://archivog.com/0555-2923/article/view/667573
- DOI: https://doi.org/10.31857/S0555292323010011
- EDN: https://elibrary.ru/JDDBTP
- ID: 667573
Citar
Resumo
Bhattacharyya parameters are used in the theory of polar codes to determine positions of frozen and information bits. These parameters characterize rate of polarization of channels WN(i), 1 ≤ i ≤ N, which are constructed in a special way from the original channel W, where N = 2n is the channel length, n = 1, 2, .... In the case where W is a binary symmetric memoryless channel, we present two series of formulas for the parameters Z(WN(i)): for i = N - 2k + 1, 0 ≤ k ≤ n, and for i = N/2 - 2k + 1, 1 ≤ k ≤ n - 2. The formulas require of the order of $\binom{2^{n-k}+2^k-1}{2^k} 2^{2^k}$ addition operations for the first series and of the order of $\binom{2^{n-k-1}+2^k-1}{2^k} 2^{2^k}$ for the second. In the cases i = 1, N/4 + 1, N/2 + 1, N, the obtained expressions for the parameters have been simplified by computing the sums in them. We show potential generalizations for the values of i in the interval (N/4, N). We also study combinatorial properties of the polarizing matrix GN of a polar code with Arıkan’s kernel. In particular, we establish simple recurrence relations between rows of the matrices GN and GN/2.
Palavras-chave
Sobre autores
S. Kolesnikov
Siberian Federal University
Email: sklsnkv@mail.ru
Krasnoyarsk, Russia
V. Leontiev
Siberian Federal University
Email: v.m.leontiev@outlook.com
Krasnoyarsk, Russia
Bibliografia
- Arıkan E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels // IEEE Trans. Inform. Theory. 2009. V. 55. № 7. P. 3051-3073. https://doi.org/10.1109/TIT.2009.2021379
- Tal I., Vardy A. How to Construct Polar Codes // IEEE Trans. Inform. Theory. 2013. V. 59. № 10. P. 6542-6582. https://doi.org/10.1109/TIT.2013.2272694
- Sarkis G., Tal I., Giard P., Vardy A., Thibeault C., Gross W.J. Flexible and Low-Complexity Encoding and Decoding of Systematic Polar Codes // IEEE Trans.Commun. 2016. V. 64. № 7. P. 2732-2745. https://doi.org/10.1109/TCOMM.2016.2574996
- Егорычев Г.П. Интегральное представление и вычисление комбинаторных сумм. Новосибирск: Наука, 1977
Arquivos suplementares
