Kinetic description of deactivation of a supplied nickel catalyst by sodium sulphide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The kinetics of reactions of liquid-phase hydrogenation of sodium acrylate on catalysts has been studied. Ni/SiO2 with different amounts of deposited nickel were used as a catalyst, as well as samples with controlled partial deactivation of the surface by sulfide ion. Approaches to determining the amount of reduced metal on the catalyst surface and the amount of catalytic poison required to deactivate active centers are shown. Hydrogenation reaction rates and activity were measured. Kinetics were modeled, and rate constants of hydrogenation, adsorption, and desorption of hydrogen were obtained. The number of active centers and their ratio to metal atoms located on the catalyst surface were estimated.

Texto integral

Acesso é fechado

Sobre autores

Yu. Romanenko

Ivanovo State University of Chemistry and Technology

Autor responsável pela correspondência
Email: Romanenko@isuct.ru
Rússia, Ivanovo, 153000

A. Afineevskii

Ivanovo State University of Chemistry and Technology

Email: Romanenko@isuct.ru
Rússia, Ivanovo, 153000

D. Prozorov

Ivanovo State University of Chemistry and Technology

Email: Romanenko@isuct.ru
Rússia, Ivanovo, 153000

N. Gordina

Ivanovo State University of Chemistry and Technology

Email: Romanenko@isuct.ru
Rússia, Ivanovo, 153000

Bibliografia

  1. Afineevskii A.V., Prozorov D.A., Knyazev A.V., Osadchaya T.Y. // ChemistrySelect. 2020. V. 5. № 3. P. 1007. doi: 10.1002/slct.201903608
  2. Singh U.K., Vannice M.A. // Appl. Catal. A: Gen. 2001. V. 213. № 1. P. 1. doi: 10.1016/S0926-860X(00)00885-1
  3. Herron J.A., Tonelli S., Mavrikakis M. // Surf. Sci. 2012. V. 606. № 21–22. P. 1670. doi: 10.1016/j.susc.2012.07.003
  4. Ceyer S.T. // Acc. Chem. Res. 2001. V. 34. № 9. P. 737. doi: 10.1021/ar970030f
  5. Прозоров Д.А., Лукин М.В., Улитин М.В. // Изв. вузов. Химия и хим. технология. 2010. Т. 53. Вып. 2. С. 125.
  6. Li J., Liu G., Long X., Gao G., Wu J., Li F. // J. Catal. 2017. V. 355. P. 53. doi: 10.1016/j.jcat.2017.09.007
  7. Teschner D., Révay Z., Borsodi J., Hävecker M., Knop‐Gericke A., Schlögl R., Milroy D., Jackson S.D., Torres D., Sautet P. // Angew. Chem. 2008. V. 120. № 48. P. 9414. doi: 10.1002/ange.200802134
  8. Afineevskii A.V., Prozorov D.A., Osadchaya T.Y., Gordina N.E. // Fine Chem. Technol. 2023. V. 18. № 4. P. 341. doi: 10.32362/2410-6593-2023-18-4-341-354
  9. Патент РФ 2604093 C1, 2016.
  10. Bartholomew C.H. // Appl. Catal. A: Gen. 2001. V. 212. № 1–2. P. 17. doi: 10.1016/S0926-860X(00)00843-7
  11. Knapik A., Drelinkiewicz A., Szaleniec M., Makowski W., Waksmundzka-Góra A., Bukowska A., Bukowski W., Noworól J. // J. Mol. Catal. A: Chem. 2008. V. 279. № 1. P. 47. doi: 10.1016/j.molcata.2007.09.018
  12. Etayo P., Vidal-Ferran A. // Chem. Soc. Rev. 2013. V. 42. № 2. P. 728. doi: 10.1039/C2CS35410A
  13. Boudjahem A.G., Monteverdi S., Mercy M., Ghanbaja D., Bettahar M.M. // Catal. Lett. 2002. V. 84. P. 115. doi: 10.1023/A:1021093005287
  14. Vogt C., Weckhuysen B.M. / /Nature Rev. Chem. 2022. V. 6. № 2. P. 89. doi: 10.1038/s41570-021-00340-y
  15. Samokhvalov A., Tatarchuk B.J. // Catal. Rev. 2010. V. 52. № 3. P. 381. doi: 10.1080/01614940.2010.498749
  16. Nørskov J.K., Bligaard T., Hvolbæk B., Abild-Pedersen F., Chorkendorff I., Christensen C.H. // Chem. Soc. Rev. 2008. V. 37. № 10. P. 2163. doi: 10.1039/b800260f
  17. Сухачев Я.П., Прозоров Д.А., Афинеевский А.В., Челышева М.Д., Никитин К.А., Жилин М.А. // Вестник Тверского государственного университета. Серия: Химия. 2018. № 3. С. 89.
  18. Меркин А.А., Романенко Ю.Е., Лефедова О.В. // Известия высших учебных заведений. Химия и химическая технология. 2014. Т. 57. № 8. С. 93. doi: 10.7868/S0044453714080263

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Survey XPS spectrum (a) and high-resolution XPS spectrum of the Ni2p sublevel (b) of the Ni27.6/SiO2 sample.

Baixar (1MB)
3. Fig. 2. Dependences of the degree of conversion on the reaction time (a) and the rate of hydrogen absorption from the gas phase on the degree of its conversion (b) for a sample of the Ni27.6/SiO2 catalyst with different sulfide content, mmolNa2S/gNi: ▲ – 0, ► – 0.036, ▼ – 0.109, ◄ – 0.217.

Baixar (463KB)
4. Fig. 3. Effect of the amount of added sulfide on the activity of the studied catalysts.

Baixar (405KB)
5. Fig. 4. Kinetic curves of hydrogen absorption from the gas phase for non-deactivated (a) and partially deactivated (b) catalysts with a nickel content of 27.6 (▲), 20.5 (●) and 9.1 wt. % (♦); dots – experiment, lines – calculation

Baixar (857KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024