Inverse Faraday Effect in Superconductors with a Finite Gap in the Excitation Spectrum

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The inverse Faraday effect (generation of a time-independent magnetic moment under the action of a circularly polarized electromagnetic wave) in mesoscopic superconducting samples with a finite gap in the excitation spectrum is analytically described. Within the modified time-dependent Ginzburg–Landau theory (Kramer–Watts-Tobin equations) for thin superconducting disks, it is shown that the temperature dependence of the optically induced magnetic moment is nonmonotonic in a wide range of parameters and contains a maximum. This maximum is due to the dephasing between the spatial oscillations of the magnitude and the phase of the order parameter, which arises with a decrease in the temperature and, correspondingly, in the characteristic relaxation time of perturbations in the superconducting condensate.

作者简介

A. Putilov

Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: alputilov@ipmras.ru

S. Mironov

Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: alputilov@ipmras.ru

A. Mel'nikov

Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia; Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudnyi, Moscow region, Russia

Email: alputilov@ipmras.ru

A. Bespalov

Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

编辑信件的主要联系方式.
Email: alputilov@ipmras.ru

参考

  1. I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).
  2. S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Cr'et'e, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il'ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, Phys. C 410, 2079 (2010).
  3. M. Eschrig, Adv. Phys. 55, 47 (2006).
  4. J. Linder and J. Robinson, Nat. Phys. 11, 307 (2015).
  5. S. Mironov, E. Goldobin, D. Koelle, R. Kleiner, Ph. Tamarat, B. Lounis, and A. Buzdin, Phys. Rev. B 96, 214515 (2017).
  6. W. Magrini, S. V. Mironov, A. Rochet, P. Tamarat, A. I. Buzdin, and B. Lounis, Appl. Phys. Lett. 114, 142601 (2019).
  7. S. Mironov, H. Meng, and A. Buzdin, Appl. Phys. Lett. 116, 162601 (2020).
  8. S. V. Mironov and A. I. Buzdin, Phys. Rev. B 104, 134502 (2021).
  9. G. M. Eliashberg, Pis'ma v ZhETF 11, 186 (1970)
  10. JETP Lett. 11, 114 (1970).
  11. T. M. Klapwijk, J. N. van den Bergh, and J. E. Mooij, J. Low Tem. Phys. 26, 385 (1977).
  12. D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Ho mann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri, Science 331, 189 (2011).
  13. R. Mankowsky, A. Subedi, M. F¨orst et al. (Collaboration), Nature 516, 71 (2014).
  14. S. Veshchunov, W. Magrini, S. V. Mironov, A. G. Godin, J.-B. Trebbia, A. I. Buzdin, Ph. Tamarat, and B. Lounis, Nat.Commun. 7, 12801 (2016).
  15. S. V. Mironov, A. S. Mel'nikov, I. D. Tokman, V. Vadimov, B. Lounis, and A. I. Buzdin, Phys. Rev. Lett. 126, 137002 (2021).
  16. M. D. Croitoru, B. Lounis, and A. I. Buzdin, Phys. Rev. B 105, L020504 (2022).
  17. M. D. Croitoru, S. V. Mironov, B. Lounis, and A. I. Buzdin, Adv. Quantum Technol. 5, 2200054 (2022).
  18. V. D. Plastovets, I. D. Tokman, B. Lounis, A. S. Mel'nikov, and A. I. Buzdin, Phys. Rev. B 106, 174504 (2022).
  19. L. P. Pitaevskii, JETP 12, 1008 (1961).
  20. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, Phys. Rev. Lett. 15, 190 (1965).
  21. A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys. 82, 2731 (2010).
  22. A. Kirilyuk, A. V. Kimel, and T. Rasing, Rep. Prog. Phys. 76, 026501 (2013).
  23. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, Nature 435, 655 (2005).
  24. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Phys. Rev. Lett. 98, 207401 (2007).
  25. O. H.-C. Cheng, D.],H. Son, and M. Sheldon, Nature Photon. 14, 365 (2020).
  26. R. Hertel, J. Magn. Mag. Materials 303, L1 (2006).
  27. R. Hertel and M. F¨ahnle, Phys. Rev. B 91, 020411(R) (2015).
  28. M. Battiato, G. Barbalinardo, and P. M. Oppeneer, Phys. Rev. B 89, 014413 (2014).
  29. I. D. Tokman, Phys. Lett. A 252, 83 (1999).
  30. G. F. Quinteiro and P. I. Tamborenea, Europhys. Lett. 85, 47001 (2009).
  31. K. L. Koshelev, V. Yu. Kachorovskii, and M. Titov, Phys. Rev. B 92, 235426 (2015).
  32. K. L. Koshelev, V. Yu. Kachorovskii, M. Titov, and M. S. Shur, Phys. Rev. B 95, 035418 (2017).
  33. O. V. Kibis, Phys. Rev. Lett. 107, 106802 (2011).
  34. M. V. Durnev and S. A. Tarasenko, Phys. Rev. B 103, 165411 (2021).
  35. L. Kramer and R. J. Watts-Tobin, Phys. Rev. Lett. 40, 1041 (1978).
  36. R. J. Watts-Tobin, Y. Kr¨ahenbu¨hl, and L. Kramer, J. Low Temp. Phys. 42, 459 (1981).
  37. А. А. Голуб, ЖЭТФ 71, 341 (1976).
  38. G. Shon and V. Ambegaokar, Phys. Rev. B 19, 3515 (1979).
  39. Б. И. Ивлев, Н. Б. Копнин, Успехи физических наук 142, 435 (1984)
  40. B. I. Ivlev and N. B. Kopnin, Sov. Phys.-Uspekhi 27, 206 (1984).
  41. Л. Д. Ландау, Л. П. Питаевский, Е. М. Лифшиц, Электродинамика сплошных сред, Физматлит, М. (2001).
  42. N. B. Kopnin, Theory of Nonequilibrium Superconductivity, Oxford Science, London (2001).
  43. S. G. Doettinger, S. Kittelberger, R. P. Huebener, and C. C. Tsuei, Phys. Rev. B 56, 14157 (1997).
  44. A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, Phys. Rev. Lett. 105, 167001 (2010).
  45. V. D. Plastovets, I. D. Tokman, B. Lounis, A. S. Mel'nikov, and A. I. Buzdin, Phys. Rerv. B 106, 174504 (2022).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023