Robust and Fast Quantum State Transfer on Superconducting Circuits

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Quantum computation attaches importance to high-precision quantum manipulation, where the quantum state transfer with high fidelity is necessary. Here, we propose a new scheme to implement the quantum state transfer of high fidelity and long distance, by adding on-site potential into the qubit chain and enlarging the proportion of the coupling strength between the two ends and the chain. In the numerical simulation, without decoherence, the transfer fidelities of 9 and 11 qubit chain are 0.999 and 0.997, respectively. Moreover, we give a detailed physical realization scheme of the quantum state transfer in superconducting circuits, and discuss the tolerance of our proposal against decoherence. Therefore, our scheme will shed light on quantum computation with long chain and high-fidelity quantum state transfer.

Об авторах

X. -Q Liu

Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou, People’s Republic of China

Email: letters@kapitza.ras.ru

J. Liu

Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou, People’s Republic of China

Email: letters@kapitza.ras.ru

Z. -Y Xue

Guangdong-Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, 510006, Guangzhou, People’s Republic of China

Автор, ответственный за переписку.
Email: letters@kapitza.ras.ru

Список литературы

  1. S. Bose, Phys. Rev. Lett. 91, 207901 (2003).
  2. M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Phys. Rev. Lett. 92, 187902 (2004).
  3. C. Albanese, M. Christandl, N. Datta, and A. Ekert, Phys. Rev. Lett. 93, 230502 (2004).
  4. M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay, and A. J. Landahl, Phys. Rev. A 71, 032312 (2005).
  5. M.-H. Yung and S. Bose, Phys. Rev. A 71, 032310 (2005).
  6. D. L. Feder, Phys. Rev. Lett. 97, 180502 (2006).
  7. D. Burgarth and S. Bose, Phys. Rev. A 71, 052315 (2005).
  8. V. Giovannetti and D. Burgarth, Phys. Rev. Lett. 96, 030501 (2006).
  9. D. Burgarth, V. Giovannetti, and S. Bose, Phys. Rev. A 75, 062327 (2007).
  10. A. Zwick, G.A. 'Alvarez, J. Stolze, and O. Osenda, Phys. Rev. A 85, 012318 (2012).
  11. A. W'ojcik, T. Luczak, P. Kurzy'nski, A. Grudka, T. Gdala, and M. Bednarska, Phys. Rev. A 72, 034303 (2005).
  12. L. Banchi, T. J.G. Apollaro, A. Cuccoli, R. Vaia, and P. Verrucchi, Phys. Rev. A 82, 052321 (2010).
  13. N.Y. Yao, L. Jiang, A.V. Gorshkov, Z.-X. Gong, A. Zhai, L.-M. Duan, and M.D. Lukin, Phys. Rev. Lett. 106, 040505 (2011).
  14. L. Elliott, S. Theodore, and D. Mattis, Ann. Phys. 16, 407 (1961).
  15. J.D. Strand, M. Ware, F. Beaudoin, T.A. Ohki, B.R. Johnson, A. Blais, and B. L.T. Plourde, Phys. Rev. B 87, 220505 (2013).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023