Coulomb Correlation Gap at Magnetic Tunneling between Graphene Layers

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The strong suppression of equilibrium magnetic tunneling in a graphene/hBN/graphene heterostructure caused by the Coulomb correlation gap in the tunneling density of states has been found. Comparison has shown that the suppression of the equilibrium tunneling conductivity G0">G0 in a high magnetic field with a decrease in the temperature and the dependence of the observed gap width Δ on the filling factor of Landau levels ν are qualitatively similar to the respective results of similar experiments in GaAs heterostructures and has confirmed our hypothesis concerning the nature of the effect. However, the determined gap width Δ is much larger than those measured in all previous works in semiconductor heterostructures probably because the cyclotron energy in graphene is much higher than that in GaAs in the region of low Landau levels.

Sobre autores

Yu. Khanin

Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: vdov62@yandex.ru
142432, Chernogolovka, Moscow region, Russia

E. Vdovin

Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: vdov62@yandex.ru
142432, Chernogolovka, Moscow region, Russia

S. Morozov

Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: vdov62@yandex.ru
142432, Chernogolovka, Moscow region, Russia

K. Novoselov

National University of Singapore

Autor responsável pela correspondência
Email: vdov62@yandex.ru
Building S9, 4 Science Drive 2, 117544, Singapore, Singapore

Bibliografia

  1. J. P. Eisenstein, L. N. Pfei er, and K. W. West, Phys. Rev. Lett. 69, 3804 (1992).
  2. N. Turner, J. T. Nicholls, E. H. Lin eld, K. M. Brown, G. A. Jones, and D. A. Ritchie, Phys. Rev. B 54, 10614 (1996).
  3. T. Reker, Y. C. Chung, H. Im, P. C. Klipstein, R. J. Nicholas, and H. Shtrikman, J. Phys.: Condens. Matter 14, 5561 (2002).
  4. S.-R. E. Yang and A. H. MacDonald, Phys. Rev. Lett. 70, 4110 (1993).
  5. Y. Hatsugai, P.-A. Bares, and X. G. Wen, Phys. Rev. Lett. 71, 424 (1993).
  6. S. He, P. M. Platzman, and B. I. Halperin, Phys. Rev. Lett. 71, 777 (1993).
  7. P. Johansson and J. M. Kinaret, Phys. Rev. Lett. 71, 1435 (1993).
  8. P. Johansson and J. M. Kinaret, Phys. Rev. B 50, 4671 (1994).
  9. I. L. Aleiner, H. U. Baranger, and L. I. Glazman, Phys. Rev. Lett. 74, 3435 (1995).
  10. I. L. Aleiner and L. I. Glazman, Phys. Rev. B 52, 11 296 (1995).
  11. M. M. Fogler, A. A. Koulakov, and B. I. Shklovskii, Phys. Rev. B 54, 1853 (1996).
  12. L. S. Levitov and A. V. Shytov, arXiv https://doi.org/10.48550/arXiv.cond-mat/9507058 (1995).
  13. K. A. Lin, N. Prasad, G. W. Burg, B. Zou, K. Ueno, K. Watanabe, T. Taniguchi, A. H. MacDonald, and E. Tutuc, Phys. Rev. Lett. 129, 18701 (2022).
  14. E. E. Vdovin, M. T. Greenaway, Y. N. Khanin, S. V. Morozov, O. Makarovsky, A. Patane, A. Mishchenko, S. Slizovskiy, V. Fal'ko, A. K. Geim, K. S. Novoselov, and L. Eaves, Commun. Phys. 6, Article number 159 (2023); https://doi.org/10.1038/s42005-023-01277-y.
  15. J. P. Eisenstein, L. N. Pfei er, and K. W. West, Phys. Rev. Lett. 74, 1419 (1995).
  16. Ю. Н. Ханин, Е. Е. Вдовин, А. Мищенко, Ж. С. Ту, А. Козиков, Р. В. Горбачев, К. С. Новоселов, Письма в ЖЭТФ 104(5), 342 (2016).
  17. Ю. Н. Ханин, Е. Е. Вдовин, И. А. Ларкин, О. Макаровский, Ю. А. Склюева, А. Мищенко, Ю. Б. Ванг, А. Козиков, Р. В. Горбачев, К. С. Новоселов, Письма в ЖЭТФ 107(4), 243, (2018).
  18. M. T. Greenaway, E. E. Vdovin, A. Mishchenko, O. Makarovsky, A. Patane, J. R. Wallbank, Y. Cao, A. V. Kretinin, M. J. Zhu, S. V. Morozov, V. I. Fal'ko, K. S. Novoselov, A. K. Geim, T. M. Fromhold, and L. Eaves, Nat. Phys. 11(12), 1057 (2015).
  19. Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 96, 136806 (2006).
  20. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).
  21. G. L. Yu, R. Jalilb, B. Belle, A. S. Mayorov, P. Blake, F. Schedin, S. V. Morozov, L. A. Ponomarenko, F. Chiappini, S. Wiedmann, U. Zeitlerd, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, and D. C. Elias, PNAS 110, 3282 (2013).
  22. E. E. Vdovin, A. Mishchenko, M. T. Greenaway, M. J. Zhu, D. Ghazaryan, A. Misra, Y. Cao, S. V. Morozov, O. Makarovsky, T. M. Fromhold, A. Patane, G. J. Slotman, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, and L. Eaves, Phys. Rev. Lett. 116, 186603 (2016).
  23. R. S. Deacon, K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 76, 081406 (2007).
  24. P. Johansson and J. M. Kinaret, Phys. Rev. Lett. 71, 1435 (1993).
  25. R. Haussmann, Phys. Rev. B 53, 7357 (1996).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023