Magnon Topological Transition in Skyrmion Crystal

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the magnon spectrum in skyrmion crystal formed in thin ferromagnetic films with Dzyaloshinskii–Moriya interaction in presence of magnetic field. Focusing on two low-lying observable magnon modes and employing stereographic projection method, we develop a theory demonstrating a topological transition in the spectrum. Upon the increase in magnetic field, the gap between two magnon bands closes, with the ensuing change in the topological character of both bands. This phenomenon of gap closing, if confirmed in magnetic resonance experiments, may deserve further investigation by thermal Hall conductivity experiments.

作者简介

V. Timofeev

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;St. Petersburg State University

Email: victor.timofeev@thd.pnpi.spb.ru
188300, Gatchina, Russia;199034, St. Petersburg, Russia

Yu. Baramygina

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;St. Petersburg State University

Email: victor.timofeev@thd.pnpi.spb.ru
188300, Gatchina, Russia;199034, St. Petersburg, Russia

D. Aristov

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;St. Petersburg State University

编辑信件的主要联系方式.
Email: victor.timofeev@thd.pnpi.spb.ru
188300, Gatchina, Russia;199034, St. Petersburg, Russia

参考

  1. H. Vakili, J.-W. Xu, W. Zhou, M. N. Sakib, M. G. Morshed, T. Hartnett, Y. Quessab, K. Litzius, C. T. Ma, S. Ganguly, M. R. Stan, P. V. Balachandran, G. S. D. Beach, S. J. Poon, A. D. Kent, and A. W. Ghosh, J. Appl. Phys. 130, 070908 (2021).
  2. M.-K. Lee and M. Mochizuki, Phys. Rev. Appl. 18, 014074 (2022).
  3. A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 1 (2017).
  4. K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Kl¨aui, J. Appl. Phys. 124, 240901 (2018).
  5. N. Nagaosa and Y. Tokura, Nature Nanotech. 8, 899 (2013).
  6. M. Garst, J. Waizner, and D. Grundler, J. Phys. D: Appl. Phys. 50, 293002 (2017).
  7. A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).
  8. A. N. Bogdanov and D. Yablonskii, ZhETF 95, 178 (1989).
  9. A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).
  10. S. Mu¨hlbauer, B. Binz, F. Jonietz, C. P eiderer, A. Rosch, A. Neubauer, R. Georgii, and P. B¨oni, Science 323, 915 (2009).
  11. C. Schu¨tte and M. Garst, Phys. Rev. B 90, 094423 (2014).
  12. S.-Z. Lin, C. D. Batista, and A. Saxena, Phys. Rev. B 89, 024415 (2014).
  13. A. Rold'an-Molina, A. S. Nunez, and J. Fern'andez-Rossier, New J. Phys. 18, 045015 (2016).
  14. V. E. Timofeev and D. N. Aristov, Phys. Rev. B 105, 024422 (2022).
  15. O. Petrova and O. Tchernyshyov, Phys. Rev. B 84, 214433 (2011).
  16. V. E. Timofeev and D. N. Aristov, JETP Lett. 118, 455 (2023).
  17. S. A. D'ıaz, T. Hirosawa, J. Klinovaja, and D. Loss, Physical Review Research 2, 013231 (2020).
  18. K. Mæland and A. Sudbø, Phys. Rev. Res. 4, L032025 (2022).
  19. K. A. van Hoogdalem, Y. Tserkovnyak, and D. Loss, Phys. Rev. B 87, 024402 (2013).
  20. R. Matsumoto, R. Shindou, and S. Murakami, Phys. Rev. B 89, 054420 (2014).
  21. W. D¨oring, Z. Naturforsch. A 3, 373 (1948).
  22. V. E. Timofeev, A. O. Sorokin, and D. N. Aristov, JETP Lett. 109, 207 (2019).
  23. V. E. Timofeev, A. O. Sorokin, and D. N. Aristov, Phys. Rev. B 103, 094402 (2021).
  24. V. E. Timofeev and D. N. Aristov, JETP Lett. 117, 676 (2023).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023