Manifestation of “Slow” Light in the Photocurrent Spectra of Ge/Si Quantum Dot Layers Combined with a Photonic Crystal

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The spectral characteristics of the photocurrent in the near-infrared range in vertical Ge/Si pin photodiodes with Ge quantum dots embedded in a two-dimensional photonic crystal are investigated. The interaction of the quantum dots with photonic Bloch modes leads to the resonant enhancement of the sensitivity of photodiodes. The dependences of the photocurrent on the angle of incidence of light are used to determine the dispersion relations of the Bloch modes. Regions in the dispersion characteristics where the group velocity of photons is close to zero are revealed. It is established that the maximum enhancement of the photocurrent relative to a photodiode without photonic crystal, which can be up to a factor of ~60, results from the interaction of quantum dots with “slow” Bloch modes.

作者简介

A. Yakimov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: yakimov@isp.nsc.ru
Novosibirsk, 630090 Russia

V. Kirienko

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: yakimov@isp.nsc.ru
Novosibirsk, 630090 Russia

A. Dvurechenskiy

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences;Novosibirsk State University

Email: yakimov@isp.nsc.ru
Novosibirsk, 630090 Russia;Novosibirsk, 630090 Russia

D. Utkin

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences;Novosibirsk State University

编辑信件的主要联系方式.
Email: yakimov@isp.nsc.ru
Novosibirsk, 630090 Russia;Novosibirsk, 630090 Russia

参考

  1. А. И. Аржанов, А. О. Севостьянов, К. А. Магарян, К. Р. Каримуллин, А. В. Наумов, Фотоника 15, 622 (2021).
  2. А. И. Аржанов, А. О. Севостьянов, К. А. Магарян, К. Р. Каримуллин, А. В. Наумов, Фотоника 16, 96 (2022).
  3. S. Tong, J. L. Liu, J. Wan, and K. L. Wang, Appl. Phys. Lett. 80, 1189 (2002).
  4. A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, K. Nakajima, and Y. Shiraki, Appl. Phys. Lett. 83, 1258 (2003).
  5. A. Elfving, G. V. Hansson, and W.-X. Ni, Physica E 16, 528 (2003).
  6. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, Mater. Res. Express 3, 105032 (2016).
  7. K. Brunner, Rep. Prog. Phys. 65, 27 (2002).
  8. O. G. Schmidt, K. Eberl, and Y. Rau, Phys. Rev. B 62, 16715 (2000).
  9. D. Gru¨tzmacher, T. Fromherz, C. Dais, J. Stangl, E. Mu¨ller, Y. Ekinci, H. Solak, H. Sigg, R. Lechner, E. Wintersberger, S. Birner, V. Holy', and G. Bauer, Nano Lett. 7, 3150 (2007).
  10. A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, A. V. Dvurechenskii, and D. E. Utkin, J. Appl. Phys. 128, 143101 (2020).
  11. А. И. Якимов, А. А. Блошкин, В. В. Кириенко, А. В. Двуреченский, Д. Е. Уткин, Письма в ЖЭТФ 113, 501 (2021).
  12. J. L. Donnelly, B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and M. de Sterke, Opt. Express 22, A1343 (2014).
  13. Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. Ponizovskaya Devine, A. F. Elrefaie, S. Y. Wang, and M. S. Islam, Nat. Photonics 11, 301 (2017).
  14. H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S. Y. Wang, and M. S. Islam, Photonics Res. 6, 734 (2018).
  15. S. Ghandiparsi, A. F. Elrefaie, A. S. Mayet, T. Landolsi, C. Bartolo-Perez, H. Cansizoglu, Y. Gao, H. H. Mamtaz, H. R. Golgir, E. Ponizovskaya Devine, T. Yamada, S. Y. Wang, and M. S. Islam, J. Light. Technol. 37, 5748 (2019).
  16. H. Zhou, S. Xu, Y. Lin, Y. C. Huang, B. Son, Q. Chen, X. Guo, K. H. Lee, S. C. K. Gon, X. Gong, and C. S. Tan, Opt. Express 28, 10280 (2020).
  17. H. Cansizoglu, E. Ponizovskaya Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S. Y. Wang, and M. S. Islam, IEEE Trans. Electron Devices 65, 372 (2018).
  18. T. Yamada, E. Ponizovskaya Devine, S. Ghandiparsi, C. Bartolo-Perez, A. S. Mayet, H. Cansizoglu, Y. Gao, A. Ahamed, S. Y. Wang, and M. S. Islam, Nanotechnology 32, 365201 (2001).
  19. C. Bartolo-Perez, S. Chandiparsi, A. S. Mayet, H. Cansizoglu, Y. Gao, W. Qarony, A. Ahamed, S. Y. Wang, S. R. Cherry, M. S. Islam, and G. Arino-Estrada, Opt. Express 29, 19024 (2021).
  20. Yu. V. Dvuzhilova, I. S. Dvuzhilov, and M. B. Belonenko, Bull.Russ. Acad. Sci.: Phys. 85, 1354 (2021).
  21. П. С. Емельянцев, Н. И. Пышков, С. Е. Свяховский, Письма в ЖЭТФ 117, 826 (2023).
  22. A. I. Yakimov, V. V. Kirienko, D. E. Utkin, and A. V. Dvurechenskii, Nanomaterials 12, 2993 (2022).
  23. D. Duch'e, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, Appl. Phys. Lett. 92, 193310 (2008).
  24. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the ow of light, Princeton University Press, Princeton (2008).
  25. T. Baba, Nat. Photonics 2, 465 (2008).
  26. И. А. Колмычек, И. В. Малышева, В. Б. Новиков, А. И. Майдыковский, А. П. Леонтьев, К. С. Напольский, Т. В. Мурзина, Письма в ЖЭТФ 114, 727 (2021).
  27. А. И. Якимов, А. В. Двуреченский, А. И. Никифоров, С. В. Чайковский, С. А. Тийс, ФТП 37, 1383 (2003).
  28. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, Appl. Phys. Lett. 112, 171107 (2018).
  29. K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, Nat.Commun. 8, 628 (2017).
  30. H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, Appl. Phys. Lett. 101, 161103 (2012).
  31. Ю. М. Серов, А. И. Галимов, А. А. Торопов, Известия Российской академии наук. Серия физическая 87, 885 (2023).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023