Calculations of the Binding-Energy Differences for Highly-Charged Ho and Dy Ions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The binding-energy differences for 163Hoq+">163Hoq+ and 163Dyq+">163Dyq+ ions with ionization degrees q=38">q=38, 39, and 40 are calculated. The calculations are performed using the large-scale relativistic configuration-interaction and relativistic coupled-clusters methods. The contributions from quantum-electrodynamics, nuclear-recoil, and frequency-dependent Breit-interaction effects are taken into account. The final uncertainty does not exceed 1 eV. Combining the obtained results with the binding-energy difference for neutral atoms calculated in [I.M. Savelyev, M.Y. Kaygorodov, Y.S. Kozhedub, I.I. Tupitsyn, and V.M. Shabaev, Phys. Rev. A 105, 012806 (2022)], we get the secondary differences of the ion–atom binding energies. These values can be used to evaluate the amount of energy released in the electron capture process in 163Ho">163Ho atom (the Q value), provided mass differences of highly charged ions 163Hoq+">163Hoq+ and 163Dyq+">163Dyq+ is known from experiment. The Q value is required by experiments on the determination of the absolute scale of the electron neutrino mass by studying the beta-decay process.

作者简介

I. Savel'ev

Department of Physics, St. Petersburg State University

Email: savelevigorm@gmail.com
St. Petersburg, 199034 Russia

M. Kaygorodov

Department of Physics, St. Petersburg State University

Email: savelevigorm@gmail.com
St. Petersburg, 199034 Russia

Yu. Kozhedub

Department of Physics, St. Petersburg State University

Email: savelevigorm@gmail.com
St. Petersburg, 199034 Russia

I. Tupitsyn

Department of Physics, St. Petersburg State University

Email: savelevigorm@gmail.com
St. Petersburg, 199034 Russia

V. Shabaev

Department of Physics, St. Petersburg State University;Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute

编辑信件的主要联系方式.
Email: savelevigorm@gmail.com
St. Petersburg, 199034 Russia;Gatchina, 188300 Russia

参考

  1. K. Zuber, Neutrino Physics, Series in High Energy Physics, Cosmology, and Gravitation, 3rd ed., CRC Press, Boca Raton, FL, USA and Abingdon, UK (2020).
  2. S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho, and M. Lattanzi, Phys. Rev. D 96, 123503 (2017).
  3. M.M. Ivanov, M. Simonovi'c, and M. Zaldarriaga, Phys. Rev. D 101, 083504 (2020).
  4. R. L. Workman, V.D. Burkert, V. Crede et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  5. M. Aker, A. Beglarian, J. Behrens et al. (KATRIN Collaboration), Nature Phys. 18, 160 (2022).
  6. P.T. Springer, C. L. Bennett, and P.A. Baisden, Phys. Rev. A 35, 679 (1987).
  7. M. Jung, F. Bosch, K. Beckert et al., Phys. Rev. Lett. 69, 2164 (1992).
  8. B. Alpert, M. Balata, D. Bennett et al. (Collaboration), Eur. Phys. J. C 75, 112 (2015).
  9. M. P. Croce, M.W. Rabin, V. Mocko et al. (Collaboration), J. Low Temp. Phys. 184, 958 (2016).
  10. L. Gastaldo, K. Blaum, K. Chrysalidis et al. (Collaboration), The European Physical Journal Special Topics 226, 1623 (2017).
  11. C. Velte, F. Ahrens, A. Barth et al. (Collaboration), Eur. Phys. J. C 79, 1026 (2019).
  12. A. Rischka, H. Cakir, M. Door et al. (Collaboration), Phys. Rev. Lett. 124, 113001 (2020).
  13. P. Filianin, C. Lyu, M. Door et al. (Collaboration), Phys. Rev. Lett. 127, 072502 (2021).
  14. S. Eliseev and Y. Novikov, Eur. Phys. J. A 59, 34 (2023).
  15. I.M. Savelyev, M.Y. Kaygorodov, Y. S. Kozhedub, I. I. Tupitsyn, and V.M. Shabaev, Phys. Rev. A 105, 012806 (2022).
  16. I. I. Tupitsyn, V.M. Shabaev, J.R. Crespo L'opez-Urrutia, I. Dragani'c, R. Soria Orts, and J. Ullrich, Phys. Rev. A 68, 022511 (2003).
  17. I. I. Tupitsyn, A.V. Volotka, D.A. Glazov, V.M. Shabaev, G. Plunien, J.R. Crespo L'opez-Urrutia, A. Lapierre, and J. Ullrich, Phys. Rev. A 72, 062503 (2005).
  18. I. I. Tupitsyn, N.A. Zubova, V.M. Shabaev, G. Plunien, and T. Stoohlker, Phys. Rev. A 98, 022517 (2018).
  19. V.M. Shabaev, I. I. Tupitsyn, and V.A. Yerokhin, Phys. Rev. A 88, 012513 (2013).
  20. V.M. Shabaev, I. I. Tupitsyn, and V.A. Yerokhin, Comput. Phys. Commun. 189, 175 (2015).
  21. V.M. Shabaev, I. I. Tupitsyn, and V.A. Yerokhin, Comput. Phys. Commun. 223, 69 (2018).
  22. V.M. Shabaev, Teor. Mat. Fiz. 63, 394 (1985) [Theor. Math. Phys. 63, 588 (1985)].
  23. V.M. Shabaev, Yad. Fiz. 47, 107 (1988) [Sov. J. Nucl. Phys. 47, 69 (1988)].
  24. C.W.P. Palmer, J. Phys. B: At. Mol. Phys. 20, 5987 (1987).
  25. V.M. Shabaev, Phys. Rev. A 57, 59 (1998).
  26. T. Saue, R. Bast, A. S.P. Gomes et al. (Collaboration), J. Chem. Phys. 152, 204104 (2020).
  27. R. Bast, A. S.P. Gomes, T. Saue et al. (Collaboration), Dirac23 (2023), URL https://doi.org/10.5281/zenodo.7670749.
  28. I. Angeli and K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).
  29. G. Rodrigues, P. Indelicato, J. Santos, P. Patt'e, and F. Parente, At. Data Nucl. Data Tables 86, 117 (2004).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023