Effect of Quantum Decoherence on Collective Neutrino Oscillations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the quantum decoherence of neutrino mass states on collective oscillations of neutrinos has been studied for the case of three flavors using a method based on the stability analysis of the Lindblad equation with the neutrino evolution Hamiltonian including the effects of the self-interaction. New analytical conditions for the appearance of collective neutrino oscillations in supernova explosions have been obtained taking into account the quantum decoherence of neutrinos.

About the authors

A. A. Purtova

Faculty of Physics, Moscow State University

Email: finollari@gmail.com
Moscow, 119991 Russia

K. L. Stankevich

Faculty of Physics, Moscow State University

Email: kl.stankevich@physics.msu.ru
Moscow, 119991 Russia

A. I. Studenikin

Faculty of Physics, Moscow State University

Author for correspondence.
Email: studenik@srd.sinp.msu.ru
Moscow, 119991 Russia

References

  1. F. N. Loreti and A. B. Balantekin, Phys. Rev. D 50, 4762 (1994).
  2. C. P. Burgess and D. Michaud, Ann. Phys. 256, 1 (1997).
  3. F. Benatti and R. Floreanini, Phys. Rev. D 71, 013003 (2005).
  4. M. Dvornikov, Phys. Rev. D 104(4), 043018 (2021).
  5. K. Stankevich and A. Studenikin, PoS, EPS-HEP2017, 645 (2018).
  6. K. Stankevich and A. Studenikin, Phys. Rev. D 101(5), 056004 (2020).
  7. A. Lichkunov, K. Stankevich, A. Studenikin, and M. Vyalkov, PoS EPS-HEP2021, 202 (2022).
  8. J. F. Nieves and S. Sahu, Phys. Rev. D 99(9), 095013 (2019).
  9. J. F. Nieves and S. Sahu, Phys. Rev. D 102(5), 056007 (2020).
  10. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
  11. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976).
  12. H. Duan, G. M. Fuller, and Y.-Z. Qian, Ann. Rev. Nucl. Part. Sci. 60, 569 (2010).
  13. K. Stankevich and A. Studenikin, PoS, ICHEP2020, 216 (2021).
  14. A. Banerjee, A. Dighe, and G. Ra elt, Phys. Rev. D 84, 053013 (2011).
  15. C. Giunti, Phys. Lett. B 686, 41 (2010).
  16. G. Balieiro Gomes, M. M. Guzzo, P. C. de Holanda, and R. L. N. Oliveira, Phys. Rev. D 95(11), 113005 (2017).
  17. J. A. B. Coelho, W. A. Mann, and S. S. Bashar, Phys. Rev. Lett. 118(22), 221801 (2017).
  18. R. L. N. Oliveira, Eur. Phys. J. C 76(7), 417 (2016).
  19. G. B. Gomes, D. V. Forero, M. M. Guzzo, P. C. De Holanda, and R. L. N. Oliveira, Phys. Rev. D 100(5), 055023 (2019).
  20. A. de Gouvea, V. de Romeri, and C. A. Ternes, JHEP 08, 018 (2020).
  21. P. C. de Holanda, JCAP 03, 012 (2020).
  22. S. Sarikas, G. Ra elt, L. Hudepohl, and H.-Th. Janka, Phys. Rev. Lett. 108, 061101 (2012).
  23. N. Saviano, S. Chakraborty, T. Fischer, and A. Mirizzi, Phys. Rev. D 85, 113002 (2012).
  24. D. Vaananen and C. Volpe, Phys. Rev. D 88, 065003 (2013).
  25. D. Vaananen and G. C. McLaughlin, Phys. Rev. D 93(10), 105044 (2016).
  26. C. Doring, R. S. L. Hansen, and M. Lindner, JCAP 08, 003 (2019).
  27. J. F. Nieves and S. Sahu, Phys. Rev. D 100(11), 115049 (2019).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук