Spatially Inhomogeneous Ultrafast Demagnetization of a Nickel Magnetoplasmonic Crystal

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A 50% decrease in the magneto-optical Kerr effect is observed in the experiment on subpicosecond laser-induced demagnetization of the one-dimensional all-nickel magnetoplasmonic crystal. The femtosecond pulse energy density is comparable to that required to achieve similar values in thin films. Numerical calculations show that such a decrease is not governed by the uniform reduction of surface magnetization, but is the result of the appearance of demagnetized and non-demagnetized areas of the surface.

作者简介

I. Novikov

Faculty of Physics, Moscow State University

Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

M. Kir'yanov

Faculty of Physics, Moscow State University

Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

A. Frolov

Faculty of Physics, Moscow State University

Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

V. Popov

Faculty of Physics, Moscow State University

Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

T. Dolgova

Faculty of Physics, Moscow State University

Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

A. Fedyanin

Faculty of Physics, Moscow State University

编辑信件的主要联系方式.
Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

参考

  1. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).
  2. M. Pankratova, I. P Miranda, D. Thonig, M. Pereiro, E. Sj¨oqvist, A. Delin, O. Eriksson, and A. Bergman. Phys. Rev. B 106, 174407 (2022).
  3. B. Mueller and B. Rethfeld. Phys. Rev. B 90, 144420 (2014).
  4. B. Koopmans, J. J.M. Ruigrok, F. Dalla Longa, and W. J.M. de Jonge, Phys. Rev. Lett. 95, 267207 (2005).
  5. K. Carva, M. Battiato, and P.M. Oppeneer, Phys. Rev. Lett. 107, 207201 (2011).
  6. Z. Zheng, Q. Zheng, and J. Zhao. Phys. Rev. B 105, 085142 (2022).
  7. U. Atxitia and O. Chubykalo-Fesenko. Phys. Rev. B 84, 144414 (2011).
  8. K. Krieger, J. Dewhurst, P. Elliott, S. Sharma, and E. Gross, J. Chem. Theory Comput. 11, 4870 (2015).
  9. S.R. Acharya, V. Turkowski, G. Zhang, and T. S. Rahman, Phys. Rev. Lett. 125, 017202 (2020).
  10. H. Hamamera, F. S.M. Guimar aes, M. dos Santos Dias, and S. Lounis, Commun. Phys. 5, 16 (2022).
  11. A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. F¨ohlisch, P.M. Oppeneer, and C. Stamm, Nat. Mater. 12, 332 (2013).
  12. G. Salvatella, R. Gort, K. B¨uhlmann, S. D¨aster, A. Vaterlaus, and Y. Acremann, Struct. Dyn. 3, 055101 (2016).
  13. K. Krieger, P. Elliott, T. M¨uller, N. Singh, J. Dewhurst, E. Gross, and S. Sharma, J. Phys. Condens. Matter 29, 224001 (2017).
  14. K. Kuiper, G. Malinowski, F. Dalla Longa, and B. Koopmans, J. Appl. Phys. 109, 07D316 (2011).
  15. Y. Kivshar, Nano Lett. 22, 3513 (2022).
  16. A.A. Popkova, I.M. Antropov, G. I. Tselikov, G.A. Ermolaev, I. Ozerov, R.V. Kirtaev, S.M. Novikov, A.B. Evlyukhin, A.V. Arsenin, V.O. Bessonov, V. S. Volkov, and A.A. Fedyanin, Laser Photonics Rev. 16, 2100604 (2022).
  17. Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, Phys. Rev. B, 100, 115303 (2019).
  18. А.М. Черняк, М. Г. Барсукова, А.С. Шорохов, А.И. Мусорин, А.А. Федянин, Письма в ЖЭТФ 111, 40 (2020)
  19. A.M. Chernyak, M.G. Barsukova, A. S. Shorokhov, A. I. Musorin, and A.A. Fedyanin, JETP Lett. 111, 46 (2020).
  20. D.O. Ignatyeva, D. Karki, A.A. Voronov, M.A. Kozhaev, D.M. Krichevsky, A. I. Chernov, M. Levy, and V. I. Belotelov, Nat. Commun. 11, 5487 (2020).
  21. Д.А. Шилкин, А.А. Федянин, Письма вЖЭТФ 115, 157 (2022)
  22. D.A. Shilkin and A.A. Fedyanin, JETP Lett. 115, 136 (2022).
  23. B. I. Afinogenov, V.O. Bessonov, I.V. Soboleva, and A.A. Fedyanin, ACS Photonics 6, 844 (2019).
  24. K.A. Willets and R.P. van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).
  25. N. Maccaferri, A. Gabbani, F. Pineider, T. Kaihara, T. Tapani, and P. Vavassori, Appl. Phys. Lett. 122, 120502 (2023).
  26. V.G. Kravets, A.V. Kabashin, W. L. Barnes, and A.N. Grigorenko, Chem. Rev. 118, 5912 (2018).
  27. A. I. Musorin, A.V. Chetvertukhin, T.V. Dolgova, H. Uchida, M. Inoue, B. S. Luk'yanchuk, and A.A. Fedyanin, Appl. Phys. Lett. 115, 151102 (2019).
  28. W. L. Barnes, A. Dereux, and T.W. Ebbesen, Nature 424, 824 (2003).
  29. M.R. Shcherbakov, P.P. Vabishchevich, A.Yu. Frolov, T.V. Dolgova, and A.A. Fedyanin, Phys. Rev. B 90, 201405 (2014).
  30. D.V. Murzin, A.Yu. Frolov, K.A. Mamian, V.K. Belyaev, A.A. Fedyanin, and V.V. Rodionova, Opt. Mater. Express 13, 171 (2023).
  31. A.N. Koya, M. Romanelli, J. Kuttruff et al. (Collaboration), Appl. Phys. Rev. 10, 021318 (2023).
  32. D. Ryabov, O. Pashina, G. Zograf, S. Makarov, and M. Petrov, Nanophotonics 11, 3981 (2022).
  33. G. Zograf, K. Koshelev, A. Zalogina, V. Korolev, R. Hollinger, D.-Y. Choi, M. Zuerch, C. Spielmann, B. Luther-Davies, D. Kartashov, S.V. Makarov, S. S. Kruk, and Y. Kivshar, ACS Photonics 9, 567 (2022).
  34. M.A. Kiryanov, A.Yu. Frolov, I.A. Novikov, P.A. Kipp, P.K. Nurgalieva, V.V. Popov, A.A. Ezhov, T.V. Dolgova, and A.A. Fedyanin, APL Photonics 7, 026104 (2022).
  35. V.K. Belyaev, V.V. Rodionova, A.A. Grunin, M. Inoue, and A.A. Fedyanin, Sci. Rep. 10, 7133 (2020).
  36. A.Yu. Frolov, M.R. Shcherbakov, and A.A. Fedyanin, Phys. Rev. B 101, 045409 (2020).
  37. M. Kataja, F. Freire Fernandez, J. Witteveen, T. Hakala, P. T¨orm¨a, and S. Dijken, Appl. Phys. Lett. 112, 072406 (2017).
  38. H. Xu, G. Hajisalem, G. Steeves, R. Gordon, and B.-C. Choi, Sci. Rep. 5, 15933 (2015).
  39. I.A. Novikov, M.A. Kiryanov, P.K. Nurgalieva, A.Yu. Frolov, V.V. Popov, T.V. Dolgova, and A.A. Fedyanin, Nano Lett. 20, 8615 (2020).
  40. M. Taghinejad, H. Taghinejad, Z. Xu, K.-T. Lee, S.P. Rodrigues, J. Yan, A. Adibi, T. Lian, and W. Cai, Nano Lett. 18, 5544 (2018).
  41. A. Schirato, M. Maiuri, A. Toma, S. Fugattini, R. Proietti Zaccaria, P. Laporta, P. Nordlander, G. Cerullo, A. Alabastri, and G. Della Valle, Nat. Photon. 14, 723 (2020).
  42. G.V. Hartland, Chem. Rev. 111, 3858 (2011).
  43. М.А. Кирьянов, Г.С. Останин, Т.В. Долгова, М. Иноуэ, А.А. Федянин, Письма вЖЭТФ 117, 201 (2023)
  44. M.A. Kiryanov, G. S. Ostanin, T.V. Dolgova, M. Inoue, and A.A. Fedyanin, JETP Lett. 117, 196 (2023).
  45. C. Voisin, D. Christofilos, N. Del Fatti, F. Vall'ee, B. Pr'evel, E. Cottancin, J. Lerm'e, M. Pellarin, and M. Broyer, Phys. Rev. Lett. 85, 2200 (2000).
  46. T. Roth, A. J. Schellekens, S. Alebrand, O. Schmitt, D. Steil, B. Koopmans, M. Cinchetti, and M. Aeschlimann, Phys. Rev. X 2, 021006 (2012).
  47. K. Krieger, P. Elliott, T. M¨uller, N. Singh, J. Dewhurst, E. Gross, and S. Sharma, J. Phys. Condens. Matter 29, 224001 (2017).
  48. U. Bierbrauer, S.T. Weber, D. Schummer, M. Barkowski, A.-K. Mahro, S. Mathias, H.C. Schneider, B. Stadtm¨uller, M. Aeschlimann, and B. Rethfeld, J. Phys., Condens. Matter 29, 244002 (2017).
  49. С.И. Анисимов, Б.Л. Капелиович, Т.Л. Перельман, ЖЭТФ 66, 776 (1974).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023