Effect of the structural state on the corrosion resistance of pure magnesium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the effect of the structural state after deformation on the corrosion resistance of pure magnesium. It was found that precipitation by ~ 10% at a temperature of 150 °C, annealed after equal-channel angular compression, allows to obtain the best corrosion resistance (11.2 ± 0.6 mm/year) by increasing the density of the twins to 779 • 10-5 pm-2.

Sobre autores

M. Shishkunova

Institute of Molecule and Crystal Physics, Ufa Federal Research Center of the Russian Academy of Sciences; Ufa University of Science and Technology

Ufa, 450054 Russia; Ufa, 450076 Russia

D. Aksenov

Institute of Molecule and Crystal Physics, Ufa Federal Research Center of the Russian Academy of Sciences

Ufa, 450054 Russia

R. Asfandiyarov

Institute of Molecule and Crystal Physics, Ufa Federal Research Center of the Russian Academy of Sciences; Ufa University of Science and Technology

Ufa, 450054 Russia; Ufa, 450076 Russia

Yu. Sementeeva

Institute of Molecule and Crystal Physics, Ufa Federal Research Center of the Russian Academy of Sciences; Ufa University of Science and Technology

Ufa, 450054 Russia; Ufa, 450076 Russia

D. Gunderov

Institute of Molecule and Crystal Physics, Ufa Federal Research Center of the Russian Academy of Sciences; Ufa University of Science and Technology

Email: dimagun@mail.ru
Ufa, 450054 Russia; Ufa, 450076 Russia

A. Churakova

Institute of Molecule and Crystal Physics, Ufa Federal Research Center of the Russian Academy of Sciences; Ufa University of Science and Technology

Ufa, 450054 Russia; Ufa, 450076 Russia

Bibliografia

  1. Kiani F.Wen C.Li Y. // Acta Biomater. 2020. V. 103. P. 1
  2. Zhang S.Zhang X.Zhao C. et al. // Acta Biomater. 2010. V. 6. No. 2. P. 626.
  3. Esmaily M.Svensson J.E.Fajardo S. et al. // Progr. Mater. Sci. 2017. V. 89. P. 92.
  4. Gusieva K.Davies C.H.J.Scully J.R.Birbilis N. // Int. Mater. Rev. 2015. V. 60. No 3. P. 169.
  5. Venkatesh R.Kanagasabapathy H. // Materials Today. Proc. 2023. https://doi.org/10.1016/j.matpr.2023.03.039
  6. Tian Z.Dong B.X.Chen X.W. et al. // J. Mater. Res. Technol. 2024. V. 6. Art. No. 022004.
  7. Рохлин Л.Л.Табачкова Н.Ю.Добаткина Т.В. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 9. С. 1274; Rokhlin L.L.Tabachkova N.Yu.Dobatkina T.V. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 9. P. 1158.
  8. Nayak S.Bhushan B.Jayaganthan R. et al. // J. Mech. Behav. Biomed. Mater. 2016. V. 59. P. 57.
  9. Ghazizadeh E.Jabbari Mostahsan A.H.Sedighi M. // J. Stress Analysis. 2019. V. 3. No. 2. P. 69.
  10. Kasaeian-Naeini M.Sedighi M.Hashemi R. // J. Magnes. Alloy. 2022. V. 10. No. 4. P. 938.
  11. Jiang J.Zhang F.Ma A. et al. // Metals. 2015. V. 6. No. 1. P. 3.
  12. Аксенов Д.А.Фахретдинова Э.И.Асфандияров Р.Н. и др. // Front. Mater. Technol. 2024. No. 1. P. 9.
  13. Feng Y.Qian L.Sun C. et al. // J. Mater. Res. Technol. 2023. V. 25. P. 5159.
  14. Aung N.N.Zhou W. // Corros. Sci. 2010. V. 52. No 2. P. 589.
  15. Xia Z.Huang R.Yan C. et al. // J. Mater. Res. Technol. 2024. V. 29. P. 1767.
  16. Gerashi E.Alizadeh R.Langdon T.G. // J. Magnes. Alloy. 2022. V. 10. No. 2. P. 313.
  17. Sabbaghian M.Mahmudi R.Shin K.S. // J. Magnes. Alloy. 2019. V. 7. No. 4. P. 707.
  18. Pu Z.Song G.L.Yang S. et al. // Corros. Sci. 2012. V. 57. P. 192.
  19. Choi H.Y.Kim W.J. // J. Mech. Behav. Biomed. Mater. 2015. V. 51. P. 291.
  20. Aksenov D.A.Nazarov A.A.Raab G.I. et al. // Materials. 2022. V. 15. No. 20. P. 7200.
  21. Плужникова Т.Н.Кириллов А.М.Долгих Д.Е.Федоров В.А. // Вестн. Росс. ун-тов. Математика. 2009. Т. 14. № 1. С. 209.
  22. Hamu G.B.Eliezer D.Wagner L. // J. Alloys Compounds. 2009. V. 468. No. 1-2. P. 222.
  23. Mа?this K.Nyilas K.Axt A. et al. // Acta Mater. 2004. V. 52. No. 10. P. 2889.
  24. Xin Y.Liu C.Zhang X. et al. // J. Mater. Res. 2007. V. 22. No. 7. P. 2004.
  25. Pekguleryuz M.Celikin M.Hoseini M. et al. // J. Alloys Compounds. 2012. V. 510. No. 1. P. 15.
  26. Masoumi M.Zarandi F.Pekguleryuz M. // Mater. Sci. Eng. A. 2011. V. 528. No. 3. P. 1268.
  27. Li L.Liu W.Qi F. et al. // J. Magnes. Alloy. 2022. V. 10. No. 9. P. 2334.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025