Studying of Filamentation Mechanism for Nanosecond Surface Dielectric Barrier Discharge. Part 1. Local Field Approximation

封面

如何引用文章

全文:

详细

The goal of this work is to check numerically whether or not the previously proposed mechanism for surface barrier discharge filamentation in nitrogen in the case of positive polarity nanosecond voltage pulse is applicable for similar process in nitrogen and air in the case of negative voltage polarity pulse. The results have shown, that in this case some signs of successful filamentation modeling are present both in nitrogen and air, but the whole dynamics of discharge development is qualitatively different from that one observed in experiment. It is assumed, that the failure of simulation is due to the usage of local field approximation, which is too rough inside a region with steep electron density gradient relevant to filamentation zone.

全文:

受限制的访问

作者简介

V. Solovyov

Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: vic__sol@mail.ru
俄罗斯联邦, Dolgoprudny, Moscow Region

D. Lisitsyn

Moscow Institute of Physics and Technology

Email: vic__sol@mail.ru
俄罗斯联邦, Dolgoprudny, Moscow Region

N. Karavaeva

Moscow Institute of Physics and Technology

Email: vic__sol@mail.ru
俄罗斯联邦, Dolgoprudny, Moscow Region

参考

  1. Soloviev V.R., Krivtsov V.M. // Plasma Sources Sci. Technol. 2018. V. 27. P. 114001.
  2. Kinefuchi K, Starikovskiy A.Y., Miles R.B. // Physics of Fluids. 2018. V. 30. P. 106105.
  3. Babaeva N.Yu, Tereshonok D.V, Naidis G.V. // Plasma Sources Sci. Technol. 2016. V. 25. P. 044008.
  4. Zhu Y., Starikovskaia S. // Plasma Sources Sci. Technol. 2018. V. 27. P. 124007.
  5. Zhu Y., Wu Y., Wei B., Liang H., Jia M., Song H., Li Y. // J. Phys. D: Appl. Phys. 2019. V. 53. P. 6517.
  6. Bayoda K.D., Benard N., Moreau E. // J. Applied Phys. 2015. V. 118. P. 63301.
  7. Александров Н.Л., Стариковский А.Ю. // Физика плазмы. 2021. Т. 47. С. 126.
  8. Starikovskiy A., Aleksandrov N. // Prog. Energy Combust. Sci. 2013. V. 39. P. 61.
  9. Starikovskaia S.M. // J. Phys. D: Appl. Phys. 2014. V. 47. P. 353001.
  10. Stepanyan S.A., Starikovskiy A.Yu., Popov N.A., Starikovskaia S.M. // Plasma Sources Sci. Technol. 2014. V. 23. P. 045003.
  11. Shcherbanev S.A., Ding Ch., Starikovskaia S.M., Popov N.A. // Plasma Sources Sci. Technol. 2019. V. 28. P. 065013.
  12. Ding Ch., Khomenko A.Yu., Shcherbanev S.A., Starikovskaia S.M. // Plasma Sources Sci. Technol. 2019. V. 28. P. 085005.
  13. Shcherbanev S.A., Popov N.A., Starikovskaia S.M. // Combustion and Flame. 2017. V. 176. P. 272.
  14. Ding Ch., Jean A., Popov N.A., Starikovskaia S.M. // Plasma Sources Sci. Technol. 2022. V. 31. P. 045013.
  15. Соловьев В.Р. // Физика плазмы. 2022. Т.48. С.552.
  16. Soloviev V.R., Krivtsov V.M. // J. Phys. D: Appl. Phys. 2009. V. 42. P. 125208.
  17. Soloviev V.R. // J. Phys.: Conf. Ser. 2020. V. 1698. P. 012026.
  18. Soloviev V.R, Anokhin E.M, Aleksandrov N.L. // Plasma Sources Sci. Technol. 2020. V. 29. P. 035006.
  19. Wormeester G., Pancheshnyi S., Luque A., Nijdam S., Ebert U. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 505201.
  20. Железняк M.Б., Мнацаканян A.Х., Сизых С.В. // ТВТ. 1982. Т. 20. C. 423.
  21. Дятко Н.А., Кочетов И.В., Напартович А.П. // Физика плазмы. 1992. Т. 18. С. 888.
  22. Kossyi I.A., Kostinsky A.Yu., Matveyev A.A., Silakov V.P. // Plasma Sources Sci. Technol. 1992. V. 1. P. 207.
  23. Chng T.L., Lepikhin N.D., Orel I.S, Popov N.A., Starikovskaia S.M. // Plasma Sources Sci. Technol. 2020. V. 29. P. 035017.
  24. Bacri J., Medani A. // Physica B+C. 1982. V. 112. P. 101.
  25. Полак Л.С., Словецкий Д.И., Соколов А.С. // Химия высоких энергий. 1972. T. 6. C. 396.
  26. Смирнов Б.М. Ионы и возбужденные атомы в плазме. М.: Атомиздат, 1974. С. 264, 271.
  27. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука. 1966. С. 394
  28. Lagmich Y., Callegari Th., Pitchford L.C., Boeuf J.P. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 095205.
  29. Soloviev V.R., Krivtsov V.M. // J. Phys.: Conf. Ser. 2017. V. 927. P. 012059.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of surface barrier discharge realisation

下载 (86KB)
3. Fig. 2. Schematic diagram of the processes to be taken into account

下载 (219KB)
4. Fig. 3. Profiles of ne, E/N (a) and excitation rates of H and C states (b) in the discharge cross section x = 0.01 mm in N2 at V = +40 kV, N/N0 = 4 without correction (1) and with correction (2) of the rate constants of excitation of H and C states

下载 (138KB)
5. Fig. 4. Experimental curves of the streamer-filamentary transition in N2 (1) and air (2) for pulses of positive (red circles) and negative (blue triangles) polarity [13]

下载 (96KB)
6. Fig. 5. Evolution of the ne profile in the discharge section x = 0.005 mm; nitrogen N2, V = +40 kV, N/N0 = 8 (a); profiles of the drift component of the energy input power jdr E and the flux ratio -jdif /jdr in the discharge section x = 0.005 mm at the moment t = 0.2 ns (b)

下载 (154KB)
7. Fig. 6. Evolution of the ne profile in the discharge cross section x = 0.005 mm; air, V = +40 kV, N/N0 = 8

下载 (92KB)
8. Fig. 7. Evolution of the ne profile in the x = 0.05 mm discharge cross section in N2 (solid curves) and air (dashed); V = -40 kV, N/N0 = 6 (a); evolution of the excess ionisation source profiles (solid curves) and E/N (dashed) in the x = 0.05 mm discharge cross section in nitrogen N2; V = -40 kV, N/N0 = 6 (b)

下载 (184KB)
9. Fig. 8. Spatial distributions of ne in air in units of 1015 cm-3 at times 0.06 (a) and 0.08 ns (b); V = -40 kV, N/N0 = 6

下载 (155KB)
10. Fig. 9. Spatial distributions of ne in units of 1015 cm-3 (a) and potential in units of kV (b) in nitrogen at time 0.06 ns; V = -40 kV, N/N0 = 6

下载 (157KB)

版权所有 © Russian Academy of Sciences, 2024