Increasing the efficiency of plasma mass separation by optimizing the electric potential

封面

如何引用文章

全文:

详细

The effect of the spatial distribution of electric potential on the separating properties of the plasma mass separator that operates in a configuration with crossed radial electric and longitudinal magnetic fields is studied. The single-particle approximation is used to obtain analytical expressions that connect the electric potential distribution and the angular mass spectrum. A mathematical algorithm is described that allows one to recover the distribution of electric potential from the given shape of the mass spectrum. It is shown that the local inhomogeneity of the electric potential profile allows one to achieve the deposition of mass groups in the diametrically opposite regions of the separator. Data is presented that confirms the possibility of creating experimentally both the positive and the negative local inhomogeneity of the potential. The results of this work can be used to increase the efficiency of the process of plasma mass separation of ions of different elements.

作者简介

A. Oiler

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: andrey_oiler@jiht.ru
俄罗斯联邦, Moscow, 125412; Dolgoprudny, Moscow oblast, 141700

R. Usmanov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: andrey_oiler@jiht.ru
俄罗斯联邦, Moscow, 125412

N. Antonov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: andrey_oiler@jiht.ru
俄罗斯联邦, Moscow, 125412

A. Gavrikov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: andrey_oiler@jiht.ru
俄罗斯联邦, Moscow, 125412

V. Smirnov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: andrey_oiler@jiht.ru
俄罗斯联邦, Moscow, 125412

参考

  1. Стратегия развития атомной энергетики России в первой половине XXI века. Основные положения. Одобрена Правительством РФ 25.05.2000 г. М.: Минатом России, 2000.
  2. Jang J., Kim T., Kim G.-Y., D., Lee S. // J. Nucl. Mater. 2019. V. 520. P. 245. Doi.org/10.1016/j.jnucmat.2019.04.024
  3. Volkovich V.A., Maltsev D.S., Soldatova M.N., Ryzhov A.A., Ivanov A.B. // Metals (Basel). 2021. V. 11. № 4. P. 550. Doi.org/10.3390/met11040550
  4. Williamson M.A., Willit J.L. // Nucl. Eng. Technol. 2011. V. 43. P. 329. Doi.org/10.5516/NET.2011.43.4.329
  5. Dolgolenko D.A., and Muromkin Yu.A. // Phys.-Usp.+. 2009. V. 179. P. 369, Doi.org/10.3367/UFNe.0179.200904c.0369
  6. Zweben S.J., Gueroult R., Fisch N.J. // Phys. Plasmas. 2018. V. 25. № 9. Doi.org/10.1063/1.5042845
  7. Martynenko Yu.V. // Phys.-Usp.+. 2009. V. 179. P. 1354. doi.org/10.3367/UFNe.0179.200912n.1354
  8. Zhang Y., Su R., Chen X., Ren C., Lv Y., Mo D., Liu M., Yan S. // J. Radioanal Nucl. Ch. 2019. V. 322. P. 1657–1662. Doi.org/10.1007/s10967-019-06745-w
  9. Ohkawa T., Miller R.L. // Phys. Plasmas. 2002. V. 9. P. 5116. Doi.org/10.1063/1.1523930
  10. Liziakin G., Antonov N., Smirnov V.S., Timirkhanov R., Oiler A., Usmanov R., Melnikov A., Vorona N., Kislenko S., Gavrikov A., Smirnov V.P. // J. Phys. D Appl. Phys. 2021. V. 54. Doi.org/10.1088/1361-6463/ac128e
  11. Smirnov V.P., Samokhin A.A., Vorona N.A., Gavrikov A. V. // Plasma Phys. Reports. 2013. V. 39. P. 456. Doi.org/10.1134/S1063780X13050103
  12. Bardakov V.M., Ivanov S.D., Strokin N.A. // Phys. Plasmas. 2014. V. 21. № 3. Doi.org/10.1063/1.4846898
  13. Gueroult R., Rax J.-M., Fisch N J // Phys. Plasmas. 2014. V. 21. № 2. Doi.org/10.1063/1.4864325
  14. Trotabas B., Gueroult R. // Plasma Sources Sci. T. 2022. V. 31. № 2. Doi.org/10.1088/1361-6595/ac4847
  15. Liziakin G., Oiler A., Gavrikov A., Antonov N., Smirnov V. // J. Plasma Phys. 2021. V. 87. № 4. Doi.org/10.1017/S0022377821000829
  16. Jin S., Poulos M.J., Van Compernolle B., Morales G. J. // Phys. Plasmas. 2019. V. 26. № 2. Doi.org/10.1063/1.5063597
  17. Volosov V.I., Pekker M.S. // Nuclear Fusion. 1981. V. 21. №. 10. P. 1275. doi: 10.1088/0029-5515/21/10/006
  18. Morozov A.I. Introduction to plasma dynamics. CRC Press, 2012.
  19. Liziakin G.D., Antonov N.N., Vorona N.A., Gavrikov A.V., Kislenko S. A., Kuzmichev S.D., Melnikov A.D., Oiler A.P., Smirnov V.P., Timirkhanov R.A., Usmanov R.A. // Plasma Phys. Reports. 2022. V. 48. P. 1251–60. Doi.org/S1063780X22601912
  20. Liziakin G., Antonov N., Usmanov R., Melnikov A., Timirkhanov R., Vorona N., Smirnov V. S., Oiler A., Kislenko S., Gavrikov A., Smirnov V. P. // Plasma Phys. Control. Fus. 2021. V. 63. №. 3. Doi.org/10.1088/1361-6587/abd25e
  21. Samokhin A.A., Liziakin G.D., Gavrikov A.V., Usmanov R.A., Smirnov V.P. // Journal of Physics: Conference Series. 2016. V. 774. № 1. Doi.org/10.1088/1742-6596/774/1/012198
  22. Oiler A.P., Liziakin G.D., Gavrikov A.V., Smirnov V. P. // Molecules. 2022. V. 27. P. 6824. Doi.org/10.3390/molecules27206824
  23. Brillouin L. // Phys. Rev. 1945. V. 67. P. 260. Doi.org/10.1103/PhysRev.67.260
  24. Bracewell R. // The Fourier transform and its application, 3rd ed. 2000. Singapore: McGrow-Hill Book Co-Singapore, ISBN 0-07-303938-1
  25. Gueroult R., Rax J.-M., Fisch N.J.// Phys. Plasmas. 2019. V. 26. № 12. Doi.org/10.1063/1.5126083
  26. Sheehan J.P., Hershkowitz N.// Plasma Sources Sci. T. 2011. V. 20. № 6. Doi.org/10.1088/0963-0252/20/6/063001
  27. Murzaev Y., Liziakin G., Gavrikov A., Timirkhanov R., Smirnov V. // Plasma Sci. Technol. 2019. V. 21. № 4, Doi.org/10.1088/2058-6272/aaf250

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024