Formation of active particles in methane, nitrogen, and oxygen mixtures under simultaneous action of an electric field and an electron beam

Cover Page

Cite item

Full Text

Abstract

The paper presents a computational and theoretical analysis of kinetic processes in methane, nitrogen, and oxygen mixtures for non-self-sustaining direct current discharges supported by an electron beam. Within an approximate approach, the kinetic coefficients in plasma under the simultaneous action of an applied electric field and an electron beam are determined. In a zero-dimensional (spatially homogeneous) approximation, the quasi-stationary composition of charged particles is calculated. The rate constants for generation of chemically active neutral particles of various types in plasma are calculated along with the energy efficiencies (G-factors) of the production of these particles depending on the magnitudes of the reduced electric field and the beam current. Similarity rules are proposed for the relation between the rates of production of active particles under the action of an electric field and an electron beam. It is shown that, by varying the applied field, it is possible to influence the composition of the produced hydrocarbon radicals.

About the authors

D. V. Tereshonok

Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: tereshonokd@gmail.com
Russian Federation, Moscow

N. L. Aleksandrov

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: tereshonokd@gmail.com
Russian Federation, Moscow; Dolgoprudny

N. Yu. Babaeva

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: tereshonokd@gmail.com
Russian Federation, Moscow

V. P. Konovalov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: tereshonokd@gmail.com
Russian Federation, Moscow

G. V. Naidis

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: tereshonokd@gmail.com
Russian Federation, Moscow

V. A. Panov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: tereshonokd@gmail.com
Russian Federation, Moscow

A. V. Ugryumov

TVEL Joint Stock Company

Email: tereshonokd@gmail.com
Russian Federation, Moscow

References

  1. Starikovskaia S.M. // J. Phys.D: Appl. Phys. 2006. V. 39. P. 265. doi: 10.1088/0022-3727/39/16/r01.
  2. Popov N.A. // High Temp. 2007. V. 45. P. 261. doi: 10.1134/S0018151X07020174.
  3. Fridman A. Plasma Chemistry. Cambridge: Cambridge University Press, 2008.
  4. Adamovich I.V., Choi I., Jiang N., Kim J.-H., Keshav S., Lempert W.R., Mintusov E., Nishihara M., Samimy M., Uddi M. // Plasma Sources Sci. Technol. 2009. V. 18. P. 034018. doi: 10.1088/0963-0252/18/3/034018.
  5. Starikovskiy A., Aleksandrov N. // Progr. Energy Comb. Sci. 2013. V.39. P. 61. doi: 10.1016/j.pecs.2012.05.003.
  6. Starikovskaia S.M. // J. Phys. D: Appl. Phys. 2014. V. 47. 353001. doi: 10.1088/0022-3727/47/35/353001.
  7. Ju Y., Sun W. // Progr. Energy Comb. Sci. 2015. V. 48. P. 21. doi: 10.1016/j.pecs.2014.12.002.
  8. Adamovich I.V., Lempert W.R. // Plasma Phys. Contr. Fusion. 2015. V. 57. P. 014001. doi: 10.1088/0741-3335/57/1/014001.
  9. Tropina A.A., Shneider M.N., Miles R.B. // Combust. Sci. Technol. 2016. V. 188. P. 831. doi: 10.1080/00102202.2015.1125347.
  10. Yang S., Nagaraja S., Sun W., Yang V. // J. Phys. D: Appl. Phys. 2017. V. 50. 433001. doi: 10.1088/1361-6463/aa87ee.
  11. Snoeckx R., Rabinovich A., Dobrynin D., Bogaerts A., Fridman A. // Plasma Proc. Polim. 2017. V. 14. 1600115. doi: 10.1002/ppap.201600115.
  12. Панов В.А., Абрамов А.Г., Угрюмов А.В. // УПФ. 2022. № 10. С. 534. doi: 10.51368/2307-4469-2022-10-6-534-576.
  13. Lee D.H., Kang H., Kim Y., Song H., Lee H., Choi J., Kim K.-T., Song Y.-H. // Fuel Process. Technol. 2023. V. 247. P. 107761. doi: 10.1016/j.fuproc.2023.107761.
  14. Шарафутдинов Р.Г., Константинов В.О., Федосеев В.И., Щукин В.Г. // Прикладная физика. 2017. № 2. С. 13.
  15. Sharafutdinov R.G.; Konstantinov V.O.; Fedoseev V.I.; Shchukin V.G. // High Energy Chem. 2018. V. 52. P. 330. doi: 10.1134/S001814391804015X.
  16. Sharafutdinov R.G., Konstantinov V.O., Fedoseev V.I., Shchukin V.G., Gorodetskii S.A. // Pet. Chem. 2019. V. 59 (Suppl. 1). S45. doi: 10.1134/S0965544119130127.
  17. Kuznetsov D.L., Uvarin V.V., Filatov I.E. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 435203. doi: 10.1088/1361-6463/ac17b2.
  18. Ponomarev A.V. // Chem. Eng. J. Adv. 2023. V. 15. P. 100513. doi: 10.1016/j.ceja.2023.100513.
  19. Пушкарев А.И., Сазонов Р.В. // Химия высоких энергий. 2009. Т. 43. № 3. С. 202.
  20. Sun J., Chen Q., Guo Y., Zhou Z., Song Y. // J. Energy Chem. 2020. V. 46. P. 133. doi: 10.1016/j.jechem.2019.11.002.
  21. Sun J., Chen Q., Yang X., Koel B.E. // J. Phys. D: Appl. Phys. 2020. V. 53. 064001. doi: 10.1088/1361-6463/ab57dc.
  22. Hagelaar G.J.M., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722. doi: 10.1088/0963-0252/14/4/011.
  23. Коновалов В.П. // ЖТФ. 1993. Т. 63. № 3. С. 23.
  24. Коновалов В.П. // Физика плазмы. 2023. T. 49. C. 296. doi: 10.31857/S0367292122601175.
  25. Shcherbanev S.A., Popov N.A., Starikovskaia S.M. // Combust. Flame. 2017. V. 176. P. 272–284. doi: 10.1016/j.combustflame.2016.07.035.
  26. Adamovich I.V., Li T., Lempert W.R. // Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci. 2015. V. 373. P. 20140336. doi: 10.1098/rsta.2014.0336.
  27. Kim W., Mungal M.G., Cappelli M.A. // Combust. Flame. 2010. V. 157. P. 374–383. doi: 10.1016/j.combustflame.2009.06.016.
  28. Song M.Y., Yoon J.S., Cho H., Itikawa Y., Grzegorz P., Karwasz G.P., Kokoouline V., Nakamura Y., Tennyson J. // J. Phys. Chem. Ref. Data. 2015. V. 44. P. 023101. doi: 10.1063/1.4918630.
  29. Gadoum A., Benyoucef D. // IEEE Trans. Plasma Sci. 2019. V. 47. P. 1505. doi: 10.1109/TPS.2018.2885610.
  30. Winkler R., Loffhagen D., Sigeneger F. // Appl. Surf. Sci. 2002. V. 192. P. 50. doi: 10.1016/S0169-4332(02)00020-X.
  31. Ionin A.A., Kochetov I.V., Napartovich A.P., Yuryshev N.N. // J. Phys. D: Appl. Phys. 2007. V. 40. P. 25. doi: 10.1088/0022-3727/40/2/r01
  32. Александров Н.Л., Кочетов И.В. // ТВТ. 1987. Т. 25. С. 1062.
  33. Popov N.A. // Plasma Sources Sci. Technol. 2016. V. 25. P. 043002. doi: 10.1088/0963-0252/25/4/043002.
  34. Alves L.L., Coche P., Ridenti M.A., Guerra V. // Eur. Phys. J. D. 2016. V. 70. P. 124. doi: 10.1140/epjd/e2016-70102-1.
  35. Kossyi I.A., Kostinsky A.Yu., Matveyev A.A., Silakov V.P. // Plasma Sources Sci. Technol. 1992. V. 1. P. 207. doi: 10.1088/0963-0252/1/3/011.
  36. Мак-Ивен М., Филипс Л. Химия атмосферы. М.: Мир, 1978.
  37. Florescu-Mitchell A.I., Mitchell J.B.A. // Phys. Rep. 2006. V. 430. P. 277. doi: 10.1016/j.physrep.2006.04.002.
  38. Millar T.J., Farquhar P.R.A., Willacy K. // Astron. Astrophys. Suppl. Ser. 1997. V. 121. P. 139. doi: 10.1051/aas:1997118.
  39. Полак Л.С., Овсянников А.А., Словецкий Д.И., Вурзель Ф.Б. Теоретическая и прикладная плазмохимия. М.: Наука, 1975.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences