0D model of microwave discharge in water with barbotage of methane through the discharge zone

Capa

Citar

Texto integral

Resumo

A microwave discharge inside of a methane bubble in boiling water is modeled in a 0D approximation taking into account the change in the size of the plasma bubble. The process of quenching the reaction products after the bubble detaches from the electrode surface is also simulated. The working pressure is 1 atm. It is shown that the main reaction products are H2, CO2, and CO. The ratio of CO2 and CO concentrations depends on the ratio of the initial flows of water vapor and methane. The calculated concentrations of the main decomposition products of methane and water are in good agreement with experimental data.

Texto integral

Acesso é fechado

Sobre autores

Yu. Lebedev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Autor responsável pela correspondência
Email: lebedev@ips.ac.ru
Rússia, Moscow

T. Batukaev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: lebedev@ips.ac.ru
Rússia, Moscow

I. Bilera

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: lebedev@ips.ac.ru
Rússia, Moscow

A. Tatarinov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: lebedev@ips.ac.ru
Rússia, Moscow

A. Titov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: lebedev@ips.ac.ru
Rússia, Moscow

I. Epstein

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: lebedev@ips.ac.ru
Rússia, Moscow

Bibliografia

  1. Arutyunov V.S. // Combust. Plasma Chem. 2021. V. 19. P. 245.
  2. Holladay J.D., Hu J., King D.L., Wang Y. // Catal. Today. 2009. V. 139. P. 244.
  3. Abbas H.F., Daud W.M.A.W. // Int. J. Hydrogen Energy. 2010. V. 35. P. 1160. https://doi.org/10.1016/ j.ijhydene.2009.11.036
  4. Dincer I., Acar C. // Int. J. Hydrogen Energy. 2015. V. 40. P. 11094. https://doi.org/10.1016/ j.ijhydene.2014.12.035
  5. Nikolaidis P., Poullikkas A. // Renew. and Sustain. Energy Rev. 2017. V. 67. P. 597. https://doi.org/10.1016/j.rser.2016.09.044
  6. Slovetskii D. I. // High Energy Chem. 2006. V. 40. P. 86. https://doi.org/10.1134/S0018143906020044
  7. Burlica R., Shih K. Y., Hnatiuc B., Locke B. R. // Indust. Engin. Chem. Res. 2011. V. 50. P. 9466. https://doi.org/10.1021/ie101920n
  8. Mizeraczyk J., Urashima K., Jasiński M., Dors M. // Int. J. Plasma Environ. Sci. Technol. 2014. V. 8. P. 89.
  9. Mizeraczyk J., Jasiński M. // The European Phys. J. Appl. Phys. 2016. V. 75. P. 24702. https://doi.org/10.1051/epjap/2016150561
  10. Nedybaliuk O.A., Chernyak V.Y., Fedirchyk I.I., Demchina V.P., Bortyshevsky V.A., Korzh R.V. // Quest. Atomic Sci. Technol. 2016. V. 6. P. 276.
  11. Lian H.Y., Liu J.L., Li X.S., Zhu X., Weber A.Z., Zhu A.M. // Chem. Engineer. J. 2019. V. 369. P. 245. https://doi.org/10.1016/j.cej.2019.03.069
  12. Wang B., Lü Y., Zhang X., Hu S. // J. Natural Gas Chem. 2011. V. 20. P. 151. https://doi.org/10.1016/S1003-9953(10)60160-0
  13. Henriques J., Bundaleska N., Tatarova E., Dias F.M., Ferreira C.M. // Int. J. Hydrogen Energy. 2011. V. 36. P. 345. https://doi.org/10.1016/j.ijhydene.2010.09.101
  14. Bundaleska N., Tsyganov D., Saavedra R., Tatarova E., Dias F.M., Ferreira C.M. // Int. J. Hydrogen Energy. 2013. V. 38. P 9145. https://doi.org/10.1016/j.ijhydene.2013.05.016
  15. Wang Y.F., You Y.S., Tsai C.H., Wang L. C. // Int. J. Hydrogen Energy. 2010. V. 35. P. 9637. https://doi.org/10.1016/j.ijhydene.2010.06.104
  16. Hrycak B., Czylkowski D., Miotk R., Dors M., Jasinski M., Mizeraczyk J. // Open Chem. 2015. V. 13. P. 317. https://doi.org/10.1515/chem-2015-0039
  17. Miotk R., Hrycak B., Czylkowski D., Dors M., Jasinski M., Mizeraczyk J. // Plasma Sources Sci. Technol. 2016. V. 25. P. 035022. https://doi.org/10.1088/0963-0252/25/3/035022
  18. Bardos L., Baránková H., Bardos A. // Plasma Chem. Plasma Process. 2017. V. 37. P. 115. https://doi.org/10.1007/s11090-016-9766-6
  19. Yan J., Du C. Hydrogen Generation from Ethanol Using Plasma Reforming Technology. Hangzhou: Springer, Zhejiang University Press, 2017.
  20. Bundaleska N., Tsyganov D., Tatarova E., Dias F.M., Ferreira C.M. // Int. J. Hydrogen Energy. 2014. V. 39. P. 5663. https://doi.org/10.1016/j.ijhydene.2014.01.194
  21. Levko D.S., Tsymbalyuk A.N., Shchedrin A.I. // Plasma Phys. Rep. 2012. V. 38. P. 913. https://doi.org/10.1134/S1063780X1210008X
  22. Shchedrin A.I., Levko D.S., Chernyak V.Y., Yukhimenko V.V., Naumov V.V. // JETP Lett. 2008. V. 88. P. 99. https://doi.org/10.1134/S0021364008140063
  23. Wang W., Zhu C., Cao Y. // Int. J. Hydrogen Energy. 2010. V. 35. P. 1951. https://doi.org/10.1016/j.ijhydene.2009.12.170
  24. Adamovich I., Agarwal S., Ahedo E., Alves L.L., Baalrud S., Babaeva N., Bogaerts A., Bourdon A., Bruggeman P.J., Canal C., Choi E.H., Coulombe S., Zoltan Donkó Z., Graves D.B., Hamaguchi S., Hegemann D., Hori M., Kim H.-H., Kroesen G.M.W., Kushner M.J., Laricchiuta A., Li X., Magin T.E., Mededovic Thagard S., Miller V., Murphy A.B., Oehrlein G.S., Puac N., Sankaran R.M., Samukawa S., Shiratani M., Šimek M., Tarasenko N., Terashima K., Thomas Jr.E., Trieschmann J., Tsik ata S., Turner M.M., Van Der Walt I.J., Van De Sanden M.C.M, von Woedtke T. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 373001. https://doi.org/10.1088/1361-6463/ac5e1c
  25. Malik M.A., Ghaffar A., Malik S.A. // Plasma Sources Sci. Technol. 2001. V. 10. P. 82. https://doi.org/10.1088/0963-0252/10/1/311
  26. Foster J.E. // Phys. Plasmas. 2017. V. 24. P. 055501. https://doi.org/10.1063/1.4977921
  27. Rezaei F., Vanraes P., Nikiforov A., Morent R., Geyter N. // Materials. 2019. V. 12. P. 2751. https://doi.org/10.3390/ma12172751
  28. Locke B.R. // Int. J. Plasma Environ. Sci. Technol. 2012. V. 6. P. 194.
  29. Rybkin V.V., Shutov D.A. // Plasma Phys. Rep. 2017. V. 43. P. 1089.
  30. Vanraes P., Bogaerts A. // Appl. Phys. Rev. 2018. V. 5. P. 031103. https://doi.org/10.1063/1.5020511
  31. Lebedev Yu.A. // Plasma Phys. Rep. 2017. V. 43. P. 676. https://doi.org/10.1134/S1063780X17060101
  32. Horikoshi S., Serpone N. // RSC Adv. 2017. V. 7. P. 47196.
  33. Lebedev Yu.A. // High Temp. 2018. V. 56. P. 811. https://doi.org/10.1134/ S0018151X18050280
  34. Lebedev Yu.A. // Polymers. 2021. V. 13. P. 1678. https://doi.org/10.3390/polym13111678
  35. Nomura S., Toyota H., Mukasa S., Yamashita H., Maehara T., Kawashima A. J. // J. Appl. Phys. 2009. V. 106. P. 073306. https://doi.org/10.1063/1.3236575
  36. Nomura S., Toyota H., Tawara M., Yamashota H. // Appl. Phys. Lett. 2006. V. 88. P. 231502. https://doi.org/10.1063/1.2210448
  37. Liu J.L., Zhu T.H., Sun B. // Int. J. Hydrogen Energy. 2022. V. 47. P. 12841.https://doi.org/10.1016/j.ijhydene.2022.02.041
  38. Sun B., Zhao X., Xin Y., Zhu X. // Int. J. Hydrogen Energy. 2017. V. 42. P. 24047. https://doi.org/10.1016/j.ijhydene.2017.08.052
  39. Lebedev Yu.A., Tatarinov A.V., Epshtein I.L., Titov A.Y. // High Energy Chem. 2022. V. 56. P. 448. https://doi.org/10.1134/S001814392206011X
  40. Batukaev Т.S., Bilera I.V., Krashevskaya G.V., Lebedev Yu.A., Epstein I.L. // Plasma Proc. Polym. 2023. V. 20. P. e2300015. https://doi.org/10.1002/ppap.202300015
  41. B atukaev Т.S., Bilera I.V., Krashevskaya G.V., Lebedev Yu.A. // Processes. 2023. V. 11. P. 2292. https://doi.org/10.3390/pr11082292
  42. Wang Q., Wang J., Zhu T., Zhu X., B. Sun B. // Int. J. Hydrogen Energy. 2021. V. 46. P. 34105.
  43. Wang Q., Wang J., Sun J., Sun S., Zhu X., Sun B. // Chemical Engineer. J. 2023. V. 465. P. 142872.
  44. Wang Q., Sun S., Yang Y., Zhu X., Sun B. // Energy. 2024. V. 289. P. 130023.
  45. Сердюков В.С. Экспериментальное исследование микрохарактеристик и теплообмена при кипении жидкостей в условиях различных давлений: Дис. … канд. физ.-матем. наук. Новосибирск, 2020.
  46. Hagelaar G., Pitchford L. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722.
  47. Triniti Database. www.lxcat.net. Retrieved on May, 2024.
  48. Janev R.K., Reiter D. // Phys. Plasmas. 2002. V. 9. P. 4071.
  49. Morgan Database. www.lxcat.net. Retrieved on May, 30, 2024.
  50. Janev R.K., Reiter D. // Phys. Plasmas. 2004. V. 11. P. 780.
  51. Avtaeva S., General A., Kel’man V. // J. Phys. D: Applied Phys. 2010. V. 43. P. 315201.
  52. Aoki H., Kitano K., Hamaguchi S. // Plasma Sources Sci. Technol. 2008. V. 17. P. 025006.
  53. Pancheshnyi S., Biagi S., Bordage M., Hagelaar G., Morgan W., Phelps A., Pitchford L. // Chem. Phys. 2012. V. 398. P. 148.
  54. Rehman F., Lozano-Parada J.H., Zimmerman W.B. // Int. J. Hydrogen Energy. 2012. V. 37. P. 17678.
  55. Wang W., Snoeckx R., Zhang X., Cha M., Bog aerts A.J. // Phys. Chem. C. 2018. V. 122. P. 8704
  56. Tsyganov D., Bundaleska N., Tatarova E., Dias A., Henriques J., Rego A., Ferraria A., Abrashev M.V., Dias F.M.M., Luhrs C.C., Phillips J. // Plasma Sources Sci. Technol. 2016. V.2 5. P. 015013.
  57. Райзер Ю.П. Физика газового разряда, М.: Наука, 1992.
  58. GRI-Mech 3.0 http://combustion.berkeley.edu/gri-mech/
  59. COMSOL Multiphysics. https://comsol.com/chemicalreactionengineering
  60. Пархоменко В.Д., Полак Л.С., Сорока П.И., Цыбулев П.Н., Мельников Б.И., Гуськов А.Ф. Процессы и аппараты плазмохимической технологии. Киев: Вища школа, 1979.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of plasma bubble formation in water. Arrows inside the central tube-antenna show the supply of methane. Arrows outside the tube-antenna show microwaves. A bubble with plasma is located at the end of the central electrode-antenna. The bubbles that emerge are outside the discharge zone; they contain products of chemical reactions that occur during the hardening process.

Baixar (52KB)
3. Fig. 2. Evolution of a bubble in a zero-dimensional model: 1 – bubble at the initial moment, 2 – bubble at the moment of separation, 3 – bubble ascent.

Baixar (29KB)
4. Fig. 3. Dependence of the gas temperature in the bubble on time for different values ​​of M at P = 200 W, F CH 4 = 50 ml/min: 1 – M = 0.5; 2 – M = 3, 3 – M = 5.

Baixar (211KB)
5. Fig. 4. Evolution of the plasma bubble size: 1 – M = 0.5; 2 – M = 3, 3 – M = 5. P = 200 W, F CH 4 = 50 ml/min.

Baixar (214KB)
6. Fig. 5. Evolution of the average reduced field: 1 – M = 0.5; 2 – M = 3, 3 – M = 5. P = 200 W, F CH 4 = 50 ml/min.

Baixar (214KB)
7. Fig. 6. Concentrations of the main charged particles before the bubble detaches from the antenna: 1 – electrons; 2 – sum of concentrations of negative ions, 3 – sum of concentrations of positive ions. M = 3, P = 200 W, F CH 4 = 50 ml/min.

Baixar (220KB)
8. Fig. 7. Concentrations of the main neutral particles before the bubble detaches from the antenna for different values ​​of M: M = 0.5 (a); M = 3 (b), M = 5 (c); 1 – H 2 O, 2 – CH 4, 3 – H 2, 4 – CO 2, 5 – CO. P = 200 W, F CH 4 = 50 ml/min.

Baixar (719KB)
9. Fig. 8. Scheme of formation of CO from methane and water vapor.

Baixar (83KB)
10. Fig. 9. Rate of the main processes of formation and destruction of CO: M = 0.5 (a); 1 – HCO + H 2 O = H + H 2 + + CO; 2 – H + HCCO = CH 2 + CO; 3 – CO + OH = = CO 2 + H; 4 – O 1 (D) + CO → CO 2 ; M = 5 (b); 1 – HCO + H 2 O = H + H 2 + CO; 2 – H + HCO = H 2 + + CO; 3 – CO + OH = CO 2 + H; 4 – O – + CO → CO 2 + + e ; P = 200 W.

Baixar (131KB)
11. Fig. 10. Total rate of formation and decay of CO 2: 1 – M = 0.5; 2 – M = 3, 3 – M = 5. P = 200 W, F CH 4 = 50 ml/min.

Baixar (62KB)
12. Fig. 11. Quenching speed depending on time; M = 3; P = 200 W, F CH 4 = 50 ml/min.

Baixar (45KB)
13. Fig. 12. Decomposition products of methane and water vapor depending on the methane flow. 1, 2, 3 – mole fractions of H2, CO and CO2, respectively, experiment; 1 ′, 2 ′, 3 ′ – mole fractions of H2, CO and CO2, calculation (ml/min, P = 200 W).

Baixar (59KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024