Hybrid Fluid Model for Calculating Electron Transport in Air in Strong Electric Fields

封面

如何引用文章

全文:

详细

The hybrid fluid model for calculating electron transport in air is presented. Within the model, the transport of electrons with energies less than 300 eV is calculated based on the drift-diffusion equation, and in the high-energy range, it is calculated using a set of multigroup equations for the first two moments of the electron distribution function: the balance equations for concentrations and electron flux densities. The hybrid model presented is intended to be used for numerical simulations of electric discharge processes in air proceeding with the participation of runaway electrons. The results of numerical simulations of electron transport in air in homogeneous and inhomogeneous electric fields, which were performed using the hybrid model, were compared with the corresponding results of simulations obtained using the Monte Carlo method.

作者简介

E. Bochkov

All-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center

编辑信件的主要联系方式.
Email: e_i_bochkov@mail.ru
607188, Sarov, Nizhni Novgorod oblast, Russia

参考

  1. Dwyer J.R., Rassoul H.K., Saleh Z., Uman M.A., Jerauld J., Plumer J.A. // Geophys. Res. Lett. 2005. V. 32. P. L20809.
  2. Dwyer J.R., Saleh Z., Rassoul H.K., Concha D., Rah-man M., Cooray V., Jerauld J., Uman M.A., Rakov V. A. // J. Geophys. Res. 2008. V. 113. P. D23207.
  3. Nguyen C.V., van Deursen A.P.J., Ebert U. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 234012.
  4. Rahman M., Cooray V., Ahmad N.A., Nyberg J., Rakov V.A., Sharma S. // Geophys. Res. Lett. 2008. V. 35. P. L06805.
  5. Nguyen C.V., van Deursen A.P.J., van Heesch E.J.M., Winands G.J.J., Pemen A.J.M. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 025202.
  6. Shao T., Tarasenko V.F., Zhang C., Rybka D.V., Kosty-rya I.D., Kozyrev A.V., Yan P., Kozhevnikov V.Yu. // New J. Phys. 2011. V. 13. P. 113035.
  7. Рыбка Д.В., Андроников И.В., Евтушенко Г.С., Козырев А.В., Кожевников В.Ю., Костыря И.Д., Тарасенко В.Ф., Тригуб М.В., Шутько Ю.В. // Оптика атмосферы и океана. 2013. Т. 26. С. 85.
  8. Kochkin P.O., Nguyen C.V., van Deursen A.P.J., Ebert U. // J. Phys. D: Appl. Phys. 2012. V. 45. P. 425202.
  9. Ostgaard N., Carlson B.E., Nisi R.S., Gjesteland T., Grondahl O., Skeltved A., Lehtinen N.G., Mezentsev A., Marisaldi M., Kochkin P. // J. Geophys. Res.: Atmos. 2016. V. 121. P. 2939.
  10. Dwyer J.R., Rassoul H.K., Al-Dayeh M., Caraway L., Wright B., Chrest A., Uman M.A., Rakov V.A., Rambo K.J., Jordan D.M., Jerauld J., Smyth C. // Geophys. Res. Lett. 2004. V. 31. P. L05119.
  11. Dwyer J.R., Rassoul H.K., Al-Dayeh M., Caraway L., Chrest A., Wright B., Kozak E., Jerauld J., Uman M.A., Rakov V.A., Jordan D.M., Rambo K.J. // Geophys. Res. Lett. 2005. V. 32. P. L01803.
  12. Fishman G.J., Bhat P.N., Mallozzi R., Horack J.M., Koshut T., Kouveliotou C., Pendleton G.N., Meegan C.A., Wilson R.B., Paciesas W.S., Goodman S.J., Christi-an H.J. // Science. 1994. V. 264. P. 1313.
  13. Бабич Л.П. // УФН. 2019. Т. 189. С. 1044.
  14. Babich L.P. High-energy phenomena in electric discharges in dense gases: theory, experiment and natural phenomena. Arlington, Virginia, USA: Futurepast Inc., 2003.
  15. Celestin S., Pasko V.P. // J. Geophys. Res. 2011. V. 116. P. A03315.
  16. Бабич Л.П., Бочков Е.И., Куцык И.М. // Письма в ЖЭТФ. 2014. Т. 99 (7). С. 452. Babich L.P., Boch-kov E.I., Kutsyk I.M. // JETP Lett. 2014. V. 99 (7). P. 386.
  17. Babich L.P., Bochkov E.I., Kutsyk I.M., Neubert T., Chanrion O. // J. Geophys. Res.: Space Phys. 2015. V. 120. P. 5087. https://doi.org/10.1002/2014JA020923
  18. Babich L.P., Bochkov E.I., Kutsyk I.M., Neubert T., Chanrion O. // J. Geophys. Res.: Space Phys. 2017. V. 122. P. 8974. https://doi.org/10.1002/2017JA023917
  19. Kohn C., Chanrion O., Babich L.P., Neubert T. // Plasma Sourc. Sci. Technol. 2018. V. 27. P. 015017.
  20. Kohn C., Chanrion O., Neubert T. // Geophys. Res. Lett. 2018. V. 45. P. 5194.
  21. Cooray V., Arevalo L., Rahman M., Dwyer J., Rassoul H. // J. Atmos. Solar-Terr. Phys. 2009. V. 71. P. 1890.
  22. Babich L., Bochkov E. // J. Phys. D: Appl. Phys. 2017. V. 50. P. 455202.
  23. Kohn C., Chanrion O., Nishikawa K., Babich L., Neubert T. // Plasma Sourc. Sci. Technol. 2020. V. 29. 035023.
  24. Starikovskiy A.Yu., Aleksandrov N.L., Shneider M.N. // J. Appl. Phys. 2021. V. 129. P. 063301.
  25. Бочков Е.И., Бабич Л.П. // Физика плазмы. 2022. Т. 48. С. 276.
  26. Бочков Е.И. // Физика плазмы. 2023. Т. 49. С. 381.
  27. Sommerer T.J., Hitchon W.N.G., Lawler J.E. // Phys. Rev. A. 1989. V. 39. P. 6356.
  28. Boeuf J.-P., Pitchford L.C. // IEEE Transactions Plasma Sci. 1991. V. 19. P. 286.
  29. Hitchon W.N.G., Parker G.J., Lawler J.E. // IEEE Transactions Plasma Sci. 1993. V. 21. P. 228.
  30. Bogaerts A., Gijbels R., Goedheer W.J. // Anal. Chem. 1996. V. 68. P. 2296.
  31. Wichaidit C., Hitchon W.N.G. // J. Computat. Phys. 2005. V. 203. P. 650.
  32. Donko Z., Hartmann P., Kutasi K. // Plasma Sources Sci. Technol. 2006. V. 15. P. 178.
  33. Brok W.J.M., Wagenaars E., van Dijk J., van der Mul-len J.J.A.M. // IEEE Transactions Plasma Sci. 2007. V. 35. P. 1325.
  34. Derzsi A., Hartmann P., Korolov I., Karacsony J., Bano G., Donko Z. // J. Phys. D: Appl. Phys. 2009. V. 42. P. 225204.
  35. Бабич Л.П., Кудрявцев А.Ю., Кудрявцева М.Л., Куцык И.М. // Геомагнетизм и аэрономия. 2008. Т. 48. С. 381.
  36. Бабич Л.П., Кудрявцева М.Л. // ЖЭТФ. 2007. Т. 131. С. 808.
  37. Бабич Л.П., Бочков Е.И. // ЖЭТФ. 2011. Т. 139. С. 568.
  38. Бочков Е.И. // Физика плазмы. 2023. Т. 49. С. 175.
  39. Бочков Е.И., Бабич Л.П., Куцык И.М. // Физика плазмы. 2021. Т. 47. С. 935.
  40. Babich L.P., Bochkov E.I. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 465205.
  41. Moss G.D., Pasko V.P., Liu N., Veronis G. // J. Geophys. Res. 2006. V. 111. P. A02307.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (82KB)
3.

下载 (43KB)
4.

下载 (42KB)
5.

下载 (226KB)
6.

下载 (228KB)
7.

下载 (184KB)

版权所有 © Russian Academy of Sciences, 2023