Deposition of thin refractory-metal-films onto glasses through diaphragms at plasma focus facility

Cover Page

Cite item

Full Text

Abstract

The results of experiments are presented on the deposition onto silicate glasses of thin refractorymetal- films: molybdenum, tantalum and tungsten. The technique used for manufacturing films was based on the deposition of metal-containing plasma formed when exposing the surface of foils made of refractory metals to high-power plasma and ion pulses. For generation of such pulses, the facility of plasma focus type was used, which makes it possible to obtain ion beams and plasma flows with the energy flux density in the range of 1010—1012 W/cm2. The most intense central part of the ion-plasma flow was separated using metal diaphragms with aperture diameters of 2.5, 3.5, and 4.5 mm. Metal Mo, Ta and W films with dimensions of ∅ 3—5 mm were obtained on the surfaces of glasses. Metal films are characterized by good adhesion, since they coalesce with the glass surface. It was discovered that the planarity of films becomes violated due to the drift of molten metal particles under the glass surface. The relief of films is non-uniform, which can be explained by the presence of micrometer-sized metal particles in the plasma flow.

Full Text

Restricted Access

About the authors

V. N. Kolokoltsev

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: v.kolokoltsev@yandex.ru
Russian Federation, Moscow

V. Ya. Nikulin

Lebedev Physical Institute, Russian Academy of Sciences

Email: nikulinvy@lebedev.ru
Russian Federation, Moscow

P. V. Silin

Lebedev Physical Institute, Russian Academy of Sciences

Email: v.kolokoltsev@yandex.ru
Russian Federation, Moscow

I. V. Borovitskaya

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: v.kolokoltsev@yandex.ru
Russian Federation, Moscow

E. N. Peregudova

Lebedev Physical Institute, Russian Academy of Sciences

Email: v.kolokoltsev@yandex.ru
Russian Federation, Moscow

A. I. Gaidar

Institute of Advanced Materials and Technologies

Email: v.kolokoltsev@yandex.ru
Russian Federation, Moscow

L. I. Kobeleva

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: v.kolokoltsev@yandex.ru
Russian Federation, Moscow

A. M. Mezrin

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: v.kolokoltsev@yandex.ru
Russian Federation, Moscow

A. A. Eriskin

Lebedev Physical Institute, Russian Academy of Sciences

Email: v.kolokoltsev@yandex.ru
Russian Federation, Moscow

References

  1. Бушминский И. П., Морозов Г. В. Технологическое проектирование микросхем СВЧ. М.: МГТУ, 2001.
  2. Chalapathy R. B.V., Ramakrishna Reddy K. T. // Adv. Mater. Sci. Technol. 1998. V. 1. P. 1.
  3. Технология тонких пленок. Справ. Т. 1 / Ред. Л. Майселл, Р. Глэнг. М.: Советское радио, 1977. С. 664.
  4. Пичугин В. Ф. Материаловедение поверхности и тонких пленок. Томск: ТПУ, 2008. С. 173.
  5. Родунер Э. Размерные эффекты в наноматериалах. М.: Техносфера, С. 352.
  6. Палатник Л. С. Материаловедение в микроэлектронике. М.: Энергия, 1977. С. 280.
  7. Епифанов Г. И., Мома Ю. А. Физические основы конструирования и технология РЭА и ЭВА. М.: Советское радио, 1979. С. 352.
  8. Технология тонких пленок. Справ. Т. 2 / Ред. Л. Майселл, Р. Глэнг. М.: Советское радио, 1977. С. 768.
  9. Behrisch R. Sputtering by Particle bombardment: Experiments and Computer Calculations from Threshold to MeV Energies. Berlin: Springer, 2007.
  10. Данилин Б. С. Применение низкотемпературной плазмы для нанесения тонких пленок. М.: Энергоатомиздат, 1989. С. 328.
  11. Polukhin S. N., Nikulin V. Ya., Silin P. V. // Plasma Phys. Rep. 2022. V. 48. P. 346. https://doi.org/10.1134/S1063780X22040110
  12. Nikulin V. Ya., Kolokoltsev V. N., Silin P. V., Polu-khin S. N. // Bull. Lebedev Phys. Inst. 2019. V. 46. P. 360. https://doi.org/10.3103/S1068335619110083
  13. Bondarenko G. G., Borovitskaya I. V., Pimenov V. N., Gribkov V. A., Paduch M., Gaidar A. I., Paramonova V. V., Morozov E. V. // Russ. Metall. 2017. P. 928. https://doi.org/10.1134/S0036029517110064
  14. Kolokoltsev V. N., Maslyaev S. A., Borovitskaya I. V., Nikulin V. Ya., Silin P. V. Peregudova E. N. // J. Phys.: Confer. Ser. 2020. V. 1647. P. 012017. https://doi.org/10.1088/1742-6596/1647/1/012017
  15. Физические величины. Справ. М.: Энергоатомиздат, 1991. C. 289.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a – Schematic diagram of the PF-4 installation and successive phases of the TPO movement: 1 – insulator, 2 – breakdown phase and formation of the current-plasma sheath (CPS), 3 – CPS acceleration phase, 4 – radial compression phase, 5 – ion beam and plasma flow, 6 – pinch, 7 – external electrode (cathode), 8 – internal electrode (anode), 9 – spark gap, 10 – capacitor bank.; b – anode unit of the PF-4 installation: 1 – anode; 2 – conical hole; 3 – cathode.

Download (36KB)
3. Рис. 2. а – Производная разрядного тока в относительных единицах, развертка 2 мкс на клетку; б – фотография плазменной струи, снятая через зеленый светофильтр ЗС-8.

Download (25KB)
4. Fig. 3. Scheme of metal film deposition on glass substrates: a – 1 — sample holder rod; 2 — sample holder disk made of Kh18N10T stainless steel; 3 — pressure plate made of Kh18N10T steel; 4 — glass substrate; 5 — soft gaskets; 6 — diaphragm made of Kh18N10T steel; 7 — target (metal foil); 8 — cathode; 9 — anode; 10 — plasma jet; b – sample holder assembled with metal foil: 1 — steel disk ∅ 100 mm, 5 mm thick; 2 — control target made of titanium; 3 — diaphragms.

Download (42KB)
5. Fig. 4. a) – Tantalum film on the surface of a glass plate, deposited through a diaphragm with a ∅2.5 mm hole. Working gas argon. Feature 80 rel. units; b) – Photo of the film in the characteristic spectrum of Ta, taken on an EVO-40 scanning microscope, magnification 49×. The line marks the direction of scanning the film when measuring the relative concentration of Ta and the elemental composition (Fig. 5).

Download (29KB)
6. Fig. 5. a) – Relative concentration of Ta in the film deposition region; b) – elemental composition of the film obtained with an EVO-40 scanning microscope.

Download (32KB)
7. Fig. 6. Film surface profile Ta, measured in the middle part of the deposition area (see Fig. 4b): a) – obtained using an optical profilometer from Sensobar-Tech Sl; b) – obtained using a digital profilometer from AMBIOS XP-200.

Download (35KB)
8. Fig. 7. a) – Molybdenum film deposited on a glass plate through a diaphragm with a ∅ 3.5 mm hole. Working gas argon. Feature 130 rel. units; b) – Microstructure of the molybdenum film surface, photographed with an EVO-40 scanning microscope.

Download (31KB)
9. Fig. 8. Microstructure of the Mo film surface obtained using a Leica DM microscope: film deposition in the central region (a), at the edge of the film (b).

Download (43KB)
10. Fig. 9. a) – Formation of a crater 0.35 µm deep on a glass plate during deposition of a molybdenum film. Feature 130 rel. units. b) – Distribution profile of Mo particles in the center of the crater. Obtained on an XP-200 digital profilometer from AMBIOS.

Download (27KB)
11. Fig. 10. a) – Deposition of W film on a 1.5 mm thick glass substrate through a diaphragm with a ∅ 15 mm hole. Working gas argon. Feature 80 rel. units. Distance from the anode to the target 30 mm; b) – W foil after exposure to an Ar plasma pulse.

Download (17KB)
12. Fig. 11. a) – Deposition of a tungsten film on a 3 mm thick glass substrate through a diaphragm with a ∅ 4.5 mm hole. The distance from the target to the anode is 16 mm. The working gas is nitrogen. Peculiarity 280 rel. units; b) – W foil 20 μm thick after exposure to a plasma jet.

Download (21KB)
13. Fig. 12. a) – Deposition of a tungsten film on a glass substrate 1.5 mm thick through a diaphragm with a ∅ 4.5 mm opening. 1 – tungsten film; 2 – foam glass. The distance from the anode to the target is 15 mm. The working gas is nitrogen. Feature 230 rel. units. b) – Film profile W by the diameter of the deposition area, obtained using a digital profilometer XP-200 from AMBIOS.

Download (25KB)

Copyright (c) 2024 Russian Academy of Sciences