The frequency spectrum and energy content in a pulse flux of terahertz radiation generated by a relativistic electron beam in a plasma column with different density distributions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

This paper reports on the generation of a directed flux of electromagnetic radiation with an energy content of 10 J in the frequency range of 0.2—0.3 THz at a microsecond pulse duration in a beam-plasma system. The flux is generated when a relativistic electron beam (REB) pumps electron plasma waves in a magnetized plasma column. In the described experiments, this fundamentally new approach to generate terahertz radiation was carried out at the GOL-PET facility in the conditions of varying the beam current density and the plasma density in the appropriate ranges of 1—2 kA/cm2 and 1014—1015 cm3. From the comparison of the flux energy spectrum measured experimentally in the frequency range 0.15—0.45 THz with the calculated one obtained using the previously proposed model of radiation generation in a beam–plasma system, it was shown that this process occurs through resonant pumping by REB of precisely the branch of upper-hybrid plasma waves. Mastering this new method to generate terahertz radiation opens the prospect of its use to obtain multi-megawatt radiation fluxes in the frequency range up to 1 terahertz and higher. For such a development approach the most promising beam for pumping plasma oscillations seems to be a kiloampere REB generated in a linear induction accelerator.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Arzhannikov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Хат алмасуға жауапты Автор.
Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

S. Sinitsky

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

D. Samtsov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: D.A.Samtsov@inp.nsk.su
Ресей, Novosibirsk

I. Timofeev

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

E. Sandalov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

S. Popov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

M. Atlukhanov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

M. Makarov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

P. Kalinin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

K. Kuklin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

A. Rovenskikh

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

V. Stepanov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences (BINP SB RAS)

Email: A.V.Arzhannikov@inp.nsk.su
Ресей, Novosibirsk

Әдебиет тізімі

  1. Markelz A. G., Mittleman D. M. // ACS Photonics. 2022. V. 9. № 4. P. 1117.
  2. Cooper K. B., Dengler R. J., Llombart N., Thomas B., Chattopadhyay G., Siegel P. H. // IEEE Transactions on Terahertz Science and Technology. 2011. V. 1. № 1. P. 169.
  3. Michalchuk A. L., Hemingway J., Morrison C. A. // The Journal of Chemical Physics. 2021. V. 154. № 6. P. 064105.
  4. Arzhannikov A. V., Burdakov A. V., Koidan V. S., Vyacheslavov L. N. // Physics of REB-Plasma Interaction. Physica Scripta. 1982. V. T2’2. P. 303.
  5. Ginzburg V. L., Zheleznyakov V. V. // Soviet Astronomy. 1959. V. 3. P. 235.
  6. Arzhannikov A. V., Burdakov A. V., Kalinin P. V., Kuznetsov S. A., Makarov M. A., Mekler K. I., Polosatkin S. V., Postupaev V. V., Rovenskikh A. F., Sinitsky S. L., Sklyarov V. F., Stepanov V. D., Sulyaev Yu.S., M. Thumm K. A., Vyacheslavov L. N. // Vestnik Novosibirsk State University. Ser.: Physics. 2010. V. 5. № 4. P. 44.
  7. Arzhannikov A. V., Burdakov A. V., Kuznetsov S. A., Makarov M. A., Mekler K. I., Postupaev V. V., Rovenskikh A. F., Sinitsky S. L., Sklyarov V. F. // Fusion Science and Technology. 2011. V. 59. № 1T. P. 74.
  8. Arzhannikov A. V., Burdakov A. V., Burmasov V. S., Gavrilenko D. E., Ivanov I. A., Kasatov A. A., Kuznetsov S. A., Mekler K. I., Polosatkin S. V., Postupaev V. V., Rovenskikh A. F., Sinitsky S. L., Sklyarov V. F., Vyacheslavov L. N. // Physics of Plasmas. 2014. V. 21. № 8.
  9. Timofeev A. V. // Phys. Usp. 2004. V. 47. № 6.
  10. Timofeev I. V., Annenkov V. V., Arzhannikov A. V.// Physics of Plasmas. 2015. V. 22. № 11. https://doi.org/http://dx.doi.org/10.1063/1.4935890
  11. Arzhannikov V. A., Ivanov I. A., Kasatov A. A., Kuznetsov S. A., Makarov М. А., Mekler K. I., Polosatkin S. V., Popov S. S., Rovenskikh A. F., Samtsov D. A., Sinitsky S. L., Stepanov V. D., Annenkov V. V., Timofeev I. V. // Plasma Physics and Controlled Fusion. 2020. V. 62. № 4.
  12. Arzhannikov A. V., Timofeev I. V. // Plasma Physics and Controlled Fusion. 2012. V. 54.
  13. Аржанников А. В., Тимофеев И. В. // Вестник Новосибирского гос. ун-та. Сер.: Физика. 2016. Т. 11. № 4. С. 78.
  14. Arzhannikov A. V., Burdakov A. V., Burmasov V. S., Gavrilenko D. E., Ivanov I. A., Kasatov A. A., Kuznetsov S. A., Mekler K. I., Polosatkin S. V., Postupaev V. V., Rovenskikh A. F., Sinitsky S. L., Sklyarov V. F., Vyacheslavov L. N. // Physics of Plasmas. 2014. V. 21. № 8.
  15. Arzhannikov A. V., Burdakov A. V., Burmasov V. S., IIvanov I.A., Kasatov A. A., Kuznetsov S. A., Makarov M. A., Mekler K. I., Polosatkin S. V., Popov S. S., Postupaev V. V., Rovenskikh A. F., Sinitsky S. L., Sklyarov V. F., Stepanov V. D., Timofeev I. V., Thumm M. K.A. // IEEE Transactions on Terahertz Science and Technology. 2016. V. 6. № 2. P. 245
  16. Arzhannikov A. V., Burmasov V. S., Ivanov I. A., Kalinin P. V., Kuznetsov S. A.,Makarov M. A., Mekler K. I., Polosatkin S. V., Rovenskikh A. F., Samtsov D. A., Sinitsky S. L., Stepanov V. D., Timofeev I. V. // 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW–THz). IEEE. 2019.
  17. Samtsov D. A., Arzhannikov A. V., Sinitsky S. L., Makarov M. A., Kuznetsov S. A., Kuklin K. N., Popov S. S., Sandalov E. S., Rovenskikh A. F., Kasatov A. A., Stepanov V. D., Ivanov I. A., Timofeev I. V., Annenkov V. V., Glinskiy V. V. // IEEE Transactions on Plasma Science. 2021. V. 49. № 11. P. 3371.
  18. Arzhannikov A. V., Sinitsky S. L., Popov S. S., Timofeev I. V., Samtsov D. A., Sandalov E. S., Kalinin P. V., Kuklin K. N., Makarov M. A., Rovenskikh A. F., Stepanov V. D., Annenkov V. V., Glinsky V. V. // IEEE Transactions on Plasma Science. 2022. V. 50. № 8. P. 2348.
  19. Аржанников А. В., Синицкий С. Л., Старостенко Д. А., Логачев П. В., Бак П. А., Никифоров Д. А., Попов С. С., Калинин П. В., Самцов Д. А., Сандалов Е. С., Атлуханов М. Г., Григорьев А. Н., Воробьёв С. О., Петров Д. В., Протас Р. В.// Физика плазмы. 2022. T. 48. № 10. C. 929.
  20. Arzhannikov A. V., Ivanov I. A., Kalinin P. V., Kasatov A. A., Makarov M. A., Mekler K. I., Rovenskikh A. F., Samtsov D. A., Sandalov E. S., Sinitsky S. L. // Journal of Physics: Conf. Ser. IOP Publ. 2020. V. 1647. № 1. P. 012011.
  21. Arzhannikov A. V., Bobylev V. B., Nikolaev V. S., Sinitsky S. L., Yushkov M. V., Zotkin R. P. // 9-th Inter. Conf. High–Power Particle Beams, Washington DC, 1992. Proceedings, V. II, Electron beams. P. 1117.
  22. Arzhannikov A. V., Makarov M. A., Samtsov D. A., Sinitsky S. L., Stepanov V. D. // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019. V. 942. P. 162349.
  23. Бурмасов В. С., Бобылев В. Б., Иванов А. А., Иваненко С. В., Касатов А. А., Касатов Д. А., Кругляков Э. П., Куклин К. Н., Попов С. С., Поступаев В. В., Пурыга Е. А., Ровенских А. Ф., Скляров В. Ф. // Приборы и техника эксперимента. 2012. T. 2. С. 120.
  24. Popov S. S., Vyacheslavov L. N., Ivantsivskiy M. V., Burdakov A. V., Kasatov A. A., Polosatkin S. V., Postupaev V. V. // Fusion Science and Technology. 2011. V. 59. № 1T. P. 292.
  25. Аржанников А. В., Макаров М. А., Калинин П. А., Касатов А. А., Куклин К. Н., Попов С. С., Самцов Д. А., Сандалов Е. С., Синицкий С. Л. // Сб. тез. докл. 48 межд. звенигородская конф. по физике плазмы и управляемому термоядерному синтезу, 2021.
  26. Рогалин В. Е., Каплунов И. А., Кропотов Г. И. // Оптика и спектроскопия. 2018. Т. 125. № 6. С. 851.
  27. Arzhannikov A. V., Ivanov I. A., Kuznetsov S. A., Samtsov D. A., Lazorskiy P. A.,Gelfand A. V. // Proceedings of the 2021 IEEE22nd International Conference of Young Professionals in Electron Devices and Materials. IEEE, 2021. P. 101.
  28. Зайцев Н. И., Иляков Е. В., Ковнеристый Ю. К., Кораблев Г. С., Кулагин И. С., Лазарева И. Ю., Цалолихин В. И., Шульгин В. В. // Приборы и техника эксперимента. 1992. № 35. С. 153.
  29. Аржанников А. В., Синицкий С. Л., Самцов Д. А., Сандалов Е. С., Попов С. С., Атлуханов М. Г., Макаров М. А., Калинин П. В., Куклин К. Н., Ровенских А. Ф., Степанов В. Д. // Физика плазмы. 2022. T. 48. № 10. С. 929.
  30. Arzhannikov A. V., Burdakov A. V., Burmasov V. S., Koidan V. S., Konyukhov V. V.,Mekler K. I., Rogozin A. I., Vyacheslavov L. N. // Proc. 3rd Inter. Conf. High Power Elec. Ion Beam Res. Tech., Novosibirsk. 1979. P. 29.
  31. Аржанников А. В., Синицкий С. Л., Старостенко Д. А., Логачев П. В., Бак П. А., Никифоров Д. А., Попов С. С., Калинин П. В., Самцов Д. А., Сандалов Е. С., Атлуханов М. Г., Григорьев А. Н., Воробьёв С. О., Петров Д. В., Протас Р. В. // Сибирский физ. журн. 2023. Т. 18. № 1. С. 28.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the plasma section of the GOL-PET setup demonstrating the path of propagation of the terahertz radiation flow and the location of the diagnostics for its registration. 1 — injected REB; 2 — plasma; 3 — radiation flow; 4 — rotating mirror; 5 — polychromator; 6 — calorimeter; 7 — interferometer; 8 — Thomson scattering.

Жүктеу (16KB)
3. Fig. 2. Distribution of density along the radius of the plasma column at 2 μs (a) and the energy in the radiation pulse, which was recorded by the calorimeter behind the polymethylpentene output window (b). The results were averaged over five shots under identical conditions for the beam and plasma.

Жүктеу (20KB)
4. Fig. 3. Spectral radiation density in the radiation flux emitted into the atmosphere (a), which was recorded by an eight-channel polychromator with the plasma density distribution shown in Fig. 2a. The spectral density in Fig. 3a is plotted along the ordinate axis in relative units. Oscillograms of the injected beam current and beam electron energy (b). Radiation intensity signals received from the polychromator channels (c-e) for different frequency intervals. All signals are averaged over a series of 9 shots.

Жүктеу (63KB)
5. Fig. 4. Energy in the radiation pulse measured by the calorimeter in the case of its connection directly to the vacuum tube, in the mode with a beam current density of 1 kA/cm2 (curve 1) and with a beam current density of 2 kA/cm2 (curve 2).

Жүктеу (15KB)
6. Fig. 5. Time variation of the plasma density averaged over the plasma column diameter, recorded using a Michelson interferometer at a wavelength of 10.5 μm (a); plasma density distribution over the column radius at 1.2 μs, measured by a Thomson scattering system at a laser wavelength of 1.053 μm (b). Time is counted from the start of the REB injection.

Жүктеу (17KB)
7. Fig. 6. Spectral power density in the radiation flux generated under conditions of a plasma column with a uniform cross-section (the result was obtained by averaging the registration results for a series of nine shots under the same experimental conditions with the plasma density distribution shown in Fig. 5).

Жүктеу (24KB)
8. Fig. 7. Distribution of the spectral power density in relative units along the frequency axis in the vicinity of the Langmuir frequency ωp: a) — the calculated angular distribution of the spectral density of the radiation flux in the vicinity of the frequency ωp, the position of which on the frequency axis corresponds to unity; b) — the blue line shows the spectral power density obtained by integrating over the angles Θ of the distribution shown in Fig. a), the red line — the contour of the frequency region with the maximum spectral density of the radiation power, constructed based on the results of measurements with an eight-channel polychromator.

Жүктеу (25KB)

© Russian Academy of Sciences, 2024