The manifestation of spin-selectivity of the singlet exciton decay into a pair of triplets in the kinetics of the exciton decay in rubrene films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of singlet fission (SF) (i.e. spontaneous splitting of the excited singlet state into a pair of triplet (T) excitons (TT-pair)) is known to be be essentially affected by TT-annihilation (TTA), which manifests in magnetic field effects on the TTA and, in particular, in the magnetic-field dependence of the SF-kinetics. In this work, within the two-state model (TSM), the method of treating the magnetic field effects on the SF-kinetics, which allows for the correct description of the manifestation of stochastic migration of Texcitons assuming that the manifestation results from transition from two states of coupled and freely diffusing T-excitons. Within the TSM the analytical expression for the magnetic-field-dependent part of the SF-kinetics is derived. This expression is applied to the analysis of the SF-kinetic measured in amorphous rubrene films in the absence magnetic field and in the field B = 8 kGs.

About the authors

A. I. Shushin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: shushin@chph.ras.ru
Russian Federation, Moscow

S. Ya. Umanskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: shushin@chph.ras.ru
Russian Federation, Moscow

References

  1. M.B. Smith, J. Michl, Annu. Rev. Phys. Chem. 64, 361 (2013). https://doi.org/10.1146/annurev-physchem-040412-110130
  2. D. Casanova, Chem. Rev. 118, 7164 (2018). https://doi.org/10.1021/acs.chemrev.7b00601
  3. K. Miyata, F.S. Conrad-Burton, F. L. Geyer et al., Chem. Rev. 119, 4261 (2019). https://doi.org/10.1021/acs.chemrev.8b00572
  4. R.E. Merrifield. J. Chem. Phys. 48, 4318 (1968). https://doi.org/10.1063/1.1669777
  5. A. Suna, Phys. Rev. B 1, 1716 (1970). https://doi.org/10.1103/PhysRevB.1.1716
  6. A.I. Shushin, J. Chem. Phys., 156, 074703 (2022). https://doi.org/10.1063/5.0078158
  7. V.V. Tarasov, G.E. Zoriniants, A.I. Shushin et al. Chem. Phys. Lett. 267, 58 (1997). https://doi.org/10.1016/S0009-2614(97)00056-0
  8. A.S. Vetchinkin, S.Ya. Umanskii, Ju. A. Chaikina et al. Russ. J. Phys. Chem. B. 2022. V. 16, P. 945. https://doi.org/10.1134/S1990793122050104
  9. A.I. Shushin, S.Y. Umanskii, Y.A. Chaikina. Russ. J. Phys. Chem. B. 2023. V. 17. P. 860. https://doi.org/10.1134/S1990793123040176
  10. A.I. Shushin, S.Y. Umanskii, Y.A. Chaikina. Russ. J. Phys. Chem. B. 2023. V. 17. P. 1403. https://doi.org/10.1134/S1990793123060210
  11. S.Y. Umanskii, S.O. Adamson, A.S. Vetchinkin et. al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 346. https://doi.org/10.1134/S199079312302032X
  12. A. Ryansnyanskiy, I. Biaggio, Phys. Rev. B 84, 193203 (2011). https://doi.org/10.1103/PhysRevB.84.193203
  13. T. Barhoumi, J. L. Monge, M. Mejatty et al. Eur. Phys. J. B, 59, 167 (2007).
  14. G.B. Piland, J.J. Burdett, D. Kurunthu et al. J. Phys. Chem. 117, 1224 (2013). https://doi.org/10.1021/jp309286v
  15. G.B. Pilland, J. Burdett, R.J. Dillon et al. J. Phys. Chem. Lett. 5, 2312 (2014). https://doi.org/10.1021/jz500676c
  16. A.I. Shushin, Chem. Phys. Lett. 118, 197 (1985). https://doi.org/10.1016/0009-2614(85)85297-0
  17. A.I. Shushin, J. Chem. Phys. 95, 3657 (1991). https://doi.org/10.1063/1.460817
  18. A.I. Shushin, J. Chem. Phys. 97, 1954 (1992). https://doi.org/10.1063/1.463132
  19. U.E. Steiner, T. Ulrich, Chem. Rev. 89, 514 (1989). https://doi.org/10.1021/cr00091a003
  20. A.I. Shushin, Chem. Phys. Lett. 678, 283 (2017). https://doi.org/10.1016/j.cplett.2017.04.068
  21. A.I. Shushin, J. Chem. Phys. 151, 034103 (2019). https://doi.org/10.1063/1.5099667
  22. K. Blum, Density Matrix Theory and Applications. (Plenum Press, New York, 1981).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences