Pecularities of DNA binding to two-dimensional crystals of bacterial protein Dps from Escherichia coli based on molecular dynamics data

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, using coarse-grained molecular modeling methods, the interactions of DNA-binding protein from starved cells (Dps) of the bacterium Escherichia coli with DNA sections of various lengths and composition were investigated. The binding features in two-dimensional crystals of the Dps protein were studied. Using free energy search methods – thermodynamic integration and linear interaction energy – the most favorable conditions for the binding of DNA and Dps were determined.

作者简介

E. Tereshkin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ramm@mail.ru
俄罗斯联邦, Moscow

К. Tereshkina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ramm@mail.ru
俄罗斯联邦, Moscow

N. Loiko

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: ramm@mail.ru
俄罗斯联邦, Moscow

V. Kovalenko

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ramm@mail.ru
俄罗斯联邦, Moscow

Y. Krupyanskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ramm@mail.ru
俄罗斯联邦, Moscow

参考

  1. A.G. Tkachenko. Molecular Mechanisms of Stress Responses in Microorganisms. Yekaterinburg: Ural Branch of RAS (2012). [in Russian].
  2. H.M. Amemiya, J. Schroeder, P.L. Freddolino. Transcription 12, 182 (2021). https://doi.org/10.1080/21541264.2021.1973865
  3. A. Minsky, E. Shimoni, D. Frenkiel-Krispin. Nat Rev Mol Cell Biol. 3, 50 (2002). https://doi.org/10.1038/nrm700
  4. N. Loiko, Y. Danilova, A. Moiseenko et al. PLoS One 15, e0231562 (2020). https://doi.org/10.1371/journal.pone.0231562
  5. Y.F. Krupyanskii. Russian Journal of Physical Chemistry B. 15, 326 (2021). https://doi.org/10.31857/S0207401X21030079
  6. Y.F. Krupyanskii, V.V. Kovalenko, N.G. Loiko et al. Biophysics 67(4), 638 (2022). https://doi.org/10.31857/S0006302922040020
  7. M. Almirón, A. J. Link, D. Furlong, R. Kolter. Genes Dev. 612, 2646 (1992). https://doi.org/10.1101/gad.6.12b.2646
  8. V.O. Karas, I. Westerlaken, A.S. Meyer. J. Bacteriol. 197, 3206 (2015). https://doi.org/10.1128/jb.00650-15
  9. K. Orban, S.E. Finkel. J. Bacteriol. 204, e00036-22 (2022). https://doi.org/10.1128/jb.00036-22
  10. R.A. Grant, D.J. Filman, S.E. Finkel et al. Nat. Struct. Biol. 5, 294 (1998). https://doi.org/10.1038/nsb0498-294
  11. D. Frenkiel-Krispin and A. Minsky. J. Struct. Biol. 156, 311 (2006). https://doi.org/10.1016/j.jsb.2006.05.014
  12. N.G. Loiko, N.E. Suzina, V.S. Soina et al. Microbiology 86, 714 (2017). https://www.elibrary.ru/item.asp?id=35516020
  13. V. Kovalenko, A. Popov, G. Santoni et al. Acta Cryst. F76, 568 (2020). https://doi.org/10.1107/S2053230X20012571
  14. D.O. Sinitsyn, N.G. Loiko, S.K. Gularyan et al. Russian Journal of Physical Chemistry B. 11, 833 (2017). https://doi.org/10.1134%2FS1990793117050128
  15. A. Moiseenko, N. Loiko, K. Tereshkina et al. Biochemical and Biophysical Research Communications 517, 463 (2019). https://doi.org/10.1016%2Fj.bbrc.2019.07.103
  16. P. Ceci, S. Cellai, E. Falvo et al. Nucleic Acids Res. 32(19), 5935 (2004). https://doi.org/10.1093/nar/gkh915
  17. A. Minsky, S. G. Wolf, D. Frenkiel et al. Nature 400, 83 (1999). https://doi.org/10.1038/21918.
  18. E.V. Tereshkin, K.B. Tereshkina and Y.F. Krupyanskii. JPCS 2056(1), 012016 (2021). http://dx.doi.org/10.1088/1742-6596/2056/1/012016
  19. N.G. Loiko, E.V. Tereshkin, V.V. Kovalenko et al. Microbiology 92(1), S78 (2023). https://doi.org/10.1134/S0026261723603640
  20. E. Tereshkin, K. Tereshkina, N. Loiko et al. J Biomol Struct Dyn. 37, 2600 (2018). http://dx.doi.org/10.1080/07391102.2018.1492458
  21. E.V. Tereshkin, K.B. Tereshkina, V.V. Kovalenko et al. Russian Journal of Physical Chemistry B. 13(5), 769 (2019). http://dx.doi.org/10.1134/S199079311905021X
  22. E. Tereshkin, K. Tereshkina, N. Loiko et al. Russian Journal of Physical Chemistry B. 17, 608 (2023). http://dx.doi.org/10.1134/S1990793123030132
  23. J.J. Uusitalo, H.I. Ing´olfsson, P. Akhshi, et al., Journal of chemical theory and computation 11, 3932 (2015). https://doi.org/10.1021/acs.jctc.5b00286
  24. E.V. Tereshkin, K.B. Tereshkina, Y.F. Krupyanskii. Supercomputing Frontiers and Innovations 9, 33 (2022). https://doi.org/10.14529/jsfi220203
  25. S.S. Antipov, M.N. Tutukina, E.V. Preobrazhenskaya. et al., PLoS One 12, e0182800 (2017). https://doi.org/10.1371/journal.pone.0182800
  26. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl. Theory Comput. 4, 435 (2008). https://doi.org/10.1021/ct700301q
  27. K.R. Hadley, C. McCabe. Mol. Simul. 38, 671 (2012). https://doi.org/10.1080/08927022.2012.671942
  28. G. Bussi, D. Donadio, M. Parrinello. J Chem Phys. 126(1), 014101 (2007). https://doi.org/10.1063/1.2408420.
  29. J. Aqvist, J. Marelius. Comb. Chem. High Throughput Screening. 4, 613 (2001). https://doi.org/10.2174/1386207013330661
  30. A. Amadei, A.B. Linssen, H.J. Berendsen. Proteins. 17(4), 412 (1993). https://doi.org/10.1002/prot.340170408
  31. T.A. Azam, A. Ishihama. J Biol Chem. 274(46), 33105 (1999). https://doi.org/10.1074/jbc.274.46.33105.
  32. L. Jen-Jacobson. Biopolymers. 44, 153 (1997). https://doi.org/10.1002/(SICI)1097-0282(1997) 44:2<153::AID-BIP4>3.0.CO;2-U
  33. A.A. Anashkina. Biophys Rev. 15, 1007 (2023). https://doi.org/10.1007/s12551-023-01137-7
  34. J.L. Miller, P.A. Kollman. Physical Chemistry 100(20), 8587 (1996). https://doi.org/10.1021/jp9605358

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024