Estimation of ionospheric disturbances caused by meteorological processes in the troposphere

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Gravity waves (GWs) are one of the triggers of ionospheric disturbances that can influence ionospheric propagation of radio waves and the work of radio-technical systems. The paper considers the actual problem of estimating the response of the F2-layer of the ionosphere to the propagation of GWs from the meteorological storm region in the troposphere. The study is carried out by the numerical modeling method based on the solution of the ionospheric plasma diffusion equation taking into account the perturbation of the nEᵤtral wind under the GWs action. The amplitude of the perturbation was set based on numerical calculations of the physical model of the GSM TIP with inclusion of a realistic GWs source. The numerical estimates showed that the nEᵤtral wind perturbations in the thermosphere with a period of several hours lead to a significant decrease of the electron density and an increase of the maximum height of the F2-layer under geomagnetically quiet conditions.

Texto integral

Acesso é fechado

Sobre autores

O. Borchevkina

Kaliningrad Branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences

Autor responsável pela correspondência
Email: olga.borchevkina@mail.ru
Rússia, Kaliningrad

I. Nosikov

Kaliningrad Branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences

Email: olga.borchevkina@mail.ru
Rússia, Kaliningrad

I. Karpov

Kaliningrad Branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences

Email: olga.borchevkina@mail.ru
Rússia, Kaliningrad

Bibliografia

  1. Knížová P.K., Podolská K., Potužníková K. et al. // Ann. Geophysic. 2020. V. 38. № 1. P. 73. https.//doi.org/10.5194/angeo-38-73-2020
  2. Golubkov G.V., Adamson S.O., Borchevkina O.P. et al. // Chem. Phys. 2022. V. 41. № 5. P. 53. https.//doi.org/10.31857/S0207401X22050053
  3. Chou M.Y., Lin C.C.H., Yue J. et al. // Geophys. Res. Lett. 2017. V. 44. № 3. P. 1219. https.//doi.org/10.1002/2016GL072205
  4. Laštovichka J. // J. Atmos. Sol.-Terr. Phys. 2006. V. 68. № 3–5. P. 479. https.//doi.org/10.1016/j.jastp.2005.01.018
  5. Kshevetskii S.P., Kurdyaeva Y.A., Gavrilov N.M. // Chem. Phys. 2023. V. 42. № 10. P. 77. https.//doi.org/10.31857/S0207401X23100096
  6. Borchevkina O.P., Karpov I.V., Karpov M.I. // Atmosphere. 2020. V. 11. № 9. P. 1017. https.//doi.org/10.3390/atmos11091017
  7. Borchevkina O.P., Kurdyeva Y.A., Dyakov Y.A. et al. // Atmosphere. 2021. V. 12. № 11. P. 1384. https.//doi.org/10.3390/atmos12111384
  8. Jonah O.F., Kherani E.A., De Paula E.R. // J. Geophys. Res. A: Space Phys. 2016. V. 121. № 3. P. 2531. https.//doi.org/10.1002/2015JA022273
  9. Knížová P.K., Potužníková K., Podolská K. et al. // Front. Astron. Space Sci. 2023. V. 10. P. 1197157. https.//doi.org/10.3389/fspas.2023.1197157
  10. Kurdyaeva Y.A., Kshevetskii S.P., Borchevkina O.P. et al. // Geomagnetism and Aeronomy. 2022. V. 62. № 4. P. 537. https.//doi.org/10.31857/S0016794022040113
  11. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G. // J. Atmos. Sol.-Terr. Phys. 2015. V. 136. Part B. P. 235. https.//doi.org/10.1016/j.jastp.2015.07.006
  12. Zakharov V.I., Sigachev P.K. // Adv. Space Res. 2022. V. 69. № 1. P. 132. https.//doi.org/10.1016/j.asr.2021.09.025
  13. Bakhmetyeva N.V., Grigoriev G.I., Kalinina E.E. // Chem. Phys. 2023. V. 42. № 4. P. 73. https.//doi.org/10.31857/S0207401X23040039
  14. Hocke K., Schlegel K. // Ann. Geophys. 1996. V. 14. № 9. P. 917. https.//doi.org/10.1007/s00585-996-0917-6
  15. Bakhmetyeva N.V., Zhemyakov I.N. // Chem. Phys. 2022. V. 41. № 10. P. 65. https.//doi.org/10.31857/S0207401X2210003X
  16. Miyoshi Y., Fujiwara H. // J. Geophys. Res. 2008. V. 113. № D1. Article D01101. https.//doi.org/10.1029/2007JD008874
  17. Kurdyaeva Y.A., Bessarab F.S., Borchevkina O.P. et al. // Chem. Phys. 2024. V. 43. № 6. P. 91. https.//doi.org/10.31857/S0207401X24060105
  18. Ratovsky K., Klimenko M., Vasilyev R. et al. // Adv. Space Res. 2021. V. 67. № 1. P. 122. https.//doi.org/10.1016/j.asr.2020.10.021
  19. Vadas S.L., Crowley G. // J. Geophys. Res. Space Phys. 2017. V. 122. № 6. P. 6652. https.//doi.org/10.1002/2016JA023828
  20. Kurdyaeva Y.A., Bessarab F.S., Borchevkina O.P. et al. // Adv. Space Res. 2024. V. 74. № 5. P. 2463. https.//doi.org/10.1016/j.asr.2024.05.062
  21. Kurdyaeva Y.A., Borchevkina O.P., Golikova E.V. et al. // Izv. RAN. Ser. Fiz. 2024. V. 88. № 3. P. 481. https.//doi.org/10.31857/S0367676524030191
  22. Karpov I.V., Leble S.B., Smertin V.M. // Geomagnetism and Aeronomy. 1983. V. 23. № 4. P. 672.
  23. Karpov I.V., Leble S.B. // Izv. VUZ. Radiophys. 1983. V. 26. № 12. P. 1599
  24. Gershman B.N. Dynamics of Ionospheric Plasma. Moscow: Nauka, 1974. 257 p.
  25. Joyner K.H., Butcher E.C. // J. Atmos. Terr. Phys. 1980. V. 42. № 5. P. 455 https.//doi.org/10.1016/0021-9169(80)90005-7
  26. Handbook of Special Functions / Eds. Abramowitz M., Stegun I. Translated from English. Moscow: Nauka, 1979.
  27. Bilitza D., Altadill V., Truhlik V. et al. // Space Weather. 2017. V. 15. № 2. P. 418. https.//doi.org/10.1002/2016SW001593
  28. Namgaladze A., Korenkov Y., Klimenko V. et al. // J. Atmos. Terr. Phys. 1991. V. 53. № 11–12. P. 1113. https.//doi.org/10.1016/0021-9169(91)90060-K
  29. Bakhmetyeva N.V., Grigoriev G.I., Kalinina E.E. // Chem. Phys. 2022. V. 41. № 5. P. 441. https.//doi.org/10.31857/S0207401X22050028

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Change in the meridional wind according to the physical model GSM TIP (dashed line) and the harmonic disturbance model used in this work (solid line).

Baixar (22KB)
3. Fig. 2. Electron density profile according to the IRI model (1) for 00.00 UT on 24.10.2018 over Kaliningrad (54° N, 20° E) and the results of numerical modeling of the ionospheric F-region profile according to expression (5) without taking into account disturbance (2).

Baixar (25KB)
4. Fig. 3. Electron concentration profiles according to the analytical solution (5) at time moments: 0 (1), 1 (2), 2 (3), 3 h (4) after the start of the disturbance.

Baixar (30KB)
5. Fig. 4. Change in electron density at an altitude of 290 km under the influence of meridional wind disturbance.

Baixar (14KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025