The application of numerical inversion of the laplace transform to calculate the density of molecular states
- 作者: Adamson S.O.1, Kharlampidi D.D.2,3, Golubkov G.V.1,4, Dyakov Y.A.1, Morozov I.I.1, Olkhov O.A.1, Rodionov I.D.1, Rodionova I.P.1, Stepanov I.G.1, Shestakov D.V.1, Golubkov M.G.1
-
隶属关系:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Moscow State Pedagogical University
- RUDN University
- National Research Center “Kurchatov Institute”
- 期: 卷 44, 编号 5 (2025)
- 页面: 3-14
- 栏目: Элементарные физико-химические процессы
- URL: https://archivog.com/0207-401X/article/view/683908
- DOI: https://doi.org/10.31857/S0207401X25050014
- ID: 683908
如何引用文章
详细
To estimate the rate constants of monomolecular reactions using quasi-equilibrium statistical theory, information on the density of discrete states of molecules is required. In the present work, a new approach to calculating the density of discrete states of stable molecules and transition complexes is proposed, which is based on the numerical inversion of the Laplace transform. To test the method, the calculations of model systems including H₂O, NH₃, CD4 and с-C₃H₆ molecules were carried out. It is shown that at energies less than 200 kcal/mol, the relative error in calculating the density of discrete states does not exceed 0.5%. The results obtained by this method can be used, for instance, to estimate the rate constants of reactions involving organic radicals formed in the troposphere and tropopause.
全文:

作者简介
S. Adamson
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow
D. Kharlampidi
Moscow State Pedagogical University; RUDN University
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow; Moscow
G. Golubkov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; National Research Center “Kurchatov Institute”
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow; Moscow
Y. Dyakov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow
I. Morozov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow
O. Olkhov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow
I. Rodionov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow
I. Rodionova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow
I. Stepanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow
D. Shestakov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow
M. Golubkov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow
参考
- Morozov I.I., Vasiliev E.S., Volkov N.D. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 5. P. 877. https://doi.org/10.1134/S1990793122050220
- Adamson S.O., Kharlampidi D.D., Shtyrkova A.S. et al. // Atoms. 2023. V. 11. № 10. 132. https://doi.org/10.3390/atoms11100132
- Adamson S.O., Kharlampidi D.D., Shtyrkova A.S. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 627. https://doi.org/ 10.1134/S1990793124700192
- Vasiliev E.S., Volkov N.D., Karpov G.V. et al. // Russ. J. Phys. Chem. A. 2020. V. 94. № 10. P. 1484. https://doi.org/10.1134/S0036024420100295
- Vasiliev E.S., Volkov N.D., Karpov G.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. № 5. P. 789. https://doi.org/10.1134/S1990793121050213
- Vasiliev E.S., Karpov G.V., Shartava D.K. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 388. https://doi.org/10.1134/S1990793122030113
- Morozov I.I., Vasiliev E.S., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1091. https://doi.org/10.1134/S1990793123050251
- Dyakov Y.A., Adamson S.O., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 682. https://doi.org/10.1134/S1990793124700179
- Asplund G., Grimvall A., Jonsson S. // Chemosphere. 1994. V. 28. № 8. P. 1467. https://doi.org/10.1016/0045-6535(94)90241-0
- Hoekstra E.J. // Chemosphere. 2003. V. 52. № 2. P. 355. https://doi.org/10.1016/S0045-6535(03)00213-3
- Smith D.J., Setser D.W., Kim K.C. et al. // J. Phys. Chem. 1977. V. 81. № 9. P. 898. https://doi.org/10.1021/j100524a019
- Ebrecht J., Hack W., Wagner H.G. // Ber. Bunsenges. Phys. Chem. 1989. V. 93. № 5. P. 619. https://doi.org/10.1002/bbpc.19890930520
- Markert F., Pagsberg P. // Chem. Phys. Lett. 1993. V. 209. № 5-6. P. 445. https://doi.org/10.1016/0009-2614(93)80115-6
- Marcus R.A., Rice O.K. // J. Phys. Colloid Chem. 1951. V. 55. № 6. P. 894. https://doi.org/10.1021/j150489a013
- Marcus R.A. // J. Chem. Phys. 1952. V. 20. № 3. P. 359. https://doi.org/10.1063/1.1700424
- Baer T., Mayer P.M. // J. Am. Soc. Mass Spectrom. 1997. V. 8. № 2. P. 103. https://doi.org/10.1016/S1044-0305(96)00212-7
- Troe J. // J. Chem. Soc. Faraday Trans. 1997. V. 93. № 5. P. 885. https://doi.org/10.1039/A606453A
- Wieder G.M., Marcus R.A. // J. Chem. Phys. 1962. V. 37. № 8. P. 1835. https://doi.org/10.1063/1.1733376
- Marcus R.A. // J. Chem. Phys. 1965. V. 43. № 8. P. 2658. https://doi.org/10.1063/1.1697191
- Rosenstock H.M., Wallenstein M.B, Wahrhaftig A.L. et al. // Proc. Natl. Acad. Sci. 1952. V. 38. № 8. P. 667. https://doi.org/10.1073/pnas.38.8.667
- Rosenstock H.M. // J. Chem. Phys. 1961. V. 34. № 6. P. 2182. https://doi.org/10.1063/1.1731842
- Mozurkewich M., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6429. https://doi.org/10.1021/j150669a073
- Mozurkewich M., Lamb J.J., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6435. https://doi.org/10.1021/j150669a074
- Lamb J.J., Mozurkewich M., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6441. https://doi.org/10.1021/j150669a075
- Nordholm S. // Chem. Phys. 1989. V. 129. № 3. P. 371. https://doi.org/10.1016/0301-0104(89)85007-4
- Harrington R.E., Rabinovitch B.S., Diesen R.W. // J. Chem. Phys. 1960. V. 32. № 4. P. 1245. https://doi.org/10.1063/1.1730882
- Schneider F.W., Rabinovitch B.S. // J. Am. Chem. Soc. 1962. V. 84. № 22. P. 4215. https://doi.org/10.1021/ja00881a006
- Current J.H., Rabinovitch B.S. // J. Chem. Phys. 1963. V. 38. № 4. P. 783. https://doi.org/10.1063/1.1733764
- Haarhoff P.C. // Mol. Phys. 1963. V. 6. № 3. P. 337. https://doi.org/10.1080/00268976300100381
- Astholz D.C., Troe J., Wieters W. // J. Chem. Phys. 1979. V. 70. № 11. P. 5107. https://doi.org/10.1063/1.437352
- Stein S.E., Rabinovitch B.S. // J. Chem. Phys. 1973. V. 58. № 6. P. 2438. https://doi.org/10.1063/1.1679522
- Beyer T., Swinehart D.F. // Commun. ACM. 1973. V. 16. № 6. P. 379. https://doi.org/10.1145/362248.362275
- Rabinovitch B.S., Diesen R.W. // J. Chem. Phys. 1959. V. 30. № 3. P. 735. https://doi.org/10.1063/1.1730036
- Rabinovitch B.S., Current J.H. // J. Chem. Phys. 1961. V. 35. № 6. P. 2250. https://doi.org/10.1063/1.1732253
- Whitten G.Z., Rabinovitch B.S. // J. Chem. Phys. 1963. V. 38. № 10. P. 2466. https://doi.org/10.1063/1.1733526
- Thiele E. // J. Chem. Phys. 1963. V. 39. № 12. P. 3258. https://doi.org/10.1063/1.1734187
- Whitten G.Z., Rabinovitch B.S. // J. Chem. Phys. 1964. V. 41. № 6. P. 1883. https://doi.org/10.1063/1.1726175
- Tardy D.C., Rabinovitch B.S., Whitten G.Z. // J. Chem. Phys. 1968. V. 48. № 3. P. 1427. https://doi.org/10.1063/1.1668840
- Berblinger M., Schlier C. // J. Chem. Phys. 1992. V. 96. № 9. P. 6834. https://doi.org/10.1063/1.462572
- Lin S.H., Eyring H. // J. Chem. Phys. 1965. V. 43. № 6. P. 2153. https://doi.org/10.1063/1.1697098
- Tou J.C., Lin S.H. // J. Chem. Phys. 1968. V. 49. № 9. P. 4181. https://doi.org/10.1063/1.1670734
- Hoare M.R., Ruijgrok T.W. // J. Chem. Phys. 1970. V. 52. № 1. P. 113. https://doi.org/10.1063/1.1672655
- Hoare M.R. // J. Chem. Phys. 1970. V. 52. № 11. P. 5695. https://doi.org/10.1063/1.1672846
- Forst W. // Chem. Rev. 1971. V. 71. № 4. P. 339. https://doi.org/10.1021/cr60272a001
- Dubner H., Abate J. // J. ACM. 1968. V. 15. № 1. P. 115. https://doi.org/10.1145/321439.321446
- Hoare M.R., Pal P. // Mol. Phys. 1971. V. 20. № 4. P. 695. https://doi.org/10.1080/00268977100100661
- Bauer S.H. // J. Chem. Phys. 1939. V. 7. № 12. P. 1097. https://doi.org/10.1063/1.1750379
- Magee J.L., Hamill W.H. // J. Chem. Phys. 1959. V. 31. № 5. P. 1380. https://doi.org/10.1063/1.1730603
- Schlag E.W., Sandsmark R.A. // J. Chem. Phys. 1962. V. 37. № 1. P. 168. https://doi.org/10.1063/1.1732944
- Haarhoff P.C. // Mol. Phys. 1964. V. 7. № 2. P. 101. https://doi.org/10.1080/00268976300100871
- Forst W., Prášil Z., St. Laurent P. // J. Chem. Phys. 1967. V. 46. № 10. P. 3736. https://doi.org/10.1063/1.1840445
- Forst W. // J. Chem. Phys. 1968. V. 48. № 8. P. 3665. https://doi.org/10.1063/1.1669667
- Döntgen M. // AIP Adv. 2016. V. 6. № 9. 095318. https://doi.org/10.1063/1.4963921
- Lin S.H., Eyring H. // J. Chem. Phys. 1963. V. 39. № 6. P. 1577. https://doi.org/10.1063/1.1734483
- Kislov V.V., Nguyen T.L., Mebel A.M. et al. // J. Chem. Phys. 2004. V. 120. № 15. P. 7008. https://doi.org/10.1063/1.1676275
- Schlag E.W., Sandsmark R.A., Valance W.G. // J. Chem. Phys. 1964. V. 40. № 5. P. 1461. https://doi.org/10.1063/1.1725346
- Forst W., Práŝil Z. // J. Chem. Phys. 1969. V. 51. № 7. P. 3006. https://doi.org/10.1063/1.1672449
- Schmittroth L.A. // Commun. ACM. 1960. V. 3. № 3. P. 171. https://doi.org/10.1145/367149.367172
- Tolman R.C. The Principles of Statistical Mechanics. New York: Oxford University Press, 1938.
补充文件
