The application of numerical inversion of the laplace transform to calculate the density of molecular states

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

To estimate the rate constants of monomolecular reactions using quasi-equilibrium statistical theory, information on the density of discrete states of molecules is required. In the present work, a new approach to calculating the density of discrete states of stable molecules and transition complexes is proposed, which is based on the numerical inversion of the Laplace transform. To test the method, the calculations of model systems including H₂O, NH₃, CD4 and с-C₃H₆ molecules were carried out. It is shown that at energies less than 200 kcal/mol, the relative error in calculating the density of discrete states does not exceed 0.5%. The results obtained by this method can be used, for instance, to estimate the rate constants of reactions involving organic radicals formed in the troposphere and tropopause.

全文:

受限制的访问

作者简介

S. Adamson

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow

D. Kharlampidi

Moscow State Pedagogical University; RUDN University

Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow; Moscow

G. Golubkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; National Research Center “Kurchatov Institute”

Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow; Moscow

Y. Dyakov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow

I. Morozov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow

O. Olkhov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow

I. Rodionov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow

I. Rodionova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow

I. Stepanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow

D. Shestakov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow

M. Golubkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
俄罗斯联邦, Moscow

参考

  1. Morozov I.I., Vasiliev E.S., Volkov N.D. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 5. P. 877. https://doi.org/10.1134/S1990793122050220
  2. Adamson S.O., Kharlampidi D.D., Shtyrkova A.S. et al. // Atoms. 2023. V. 11. № 10. 132. https://doi.org/10.3390/atoms11100132
  3. Adamson S.O., Kharlampidi D.D., Shtyrkova A.S. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 627. https://doi.org/ 10.1134/S1990793124700192
  4. Vasiliev E.S., Volkov N.D., Karpov G.V. et al. // Russ. J. Phys. Chem. A. 2020. V. 94. № 10. P. 1484. https://doi.org/10.1134/S0036024420100295
  5. Vasiliev E.S., Volkov N.D., Karpov G.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. № 5. P. 789. https://doi.org/10.1134/S1990793121050213
  6. Vasiliev E.S., Karpov G.V., Shartava D.K. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 388. https://doi.org/10.1134/S1990793122030113
  7. Morozov I.I., Vasiliev E.S., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1091. https://doi.org/10.1134/S1990793123050251
  8. Dyakov Y.A., Adamson S.O., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 682. https://doi.org/10.1134/S1990793124700179
  9. Asplund G., Grimvall A., Jonsson S. // Chemosphere. 1994. V. 28. № 8. P. 1467. https://doi.org/10.1016/0045-6535(94)90241-0
  10. Hoekstra E.J. // Chemosphere. 2003. V. 52. № 2. P. 355. https://doi.org/10.1016/S0045-6535(03)00213-3
  11. Smith D.J., Setser D.W., Kim K.C. et al. // J. Phys. Chem. 1977. V. 81. № 9. P. 898. https://doi.org/10.1021/j100524a019
  12. Ebrecht J., Hack W., Wagner H.G. // Ber. Bunsenges. Phys. Chem. 1989. V. 93. № 5. P. 619. https://doi.org/10.1002/bbpc.19890930520
  13. Markert F., Pagsberg P. // Chem. Phys. Lett. 1993. V. 209. № 5-6. P. 445. https://doi.org/10.1016/0009-2614(93)80115-6
  14. Marcus R.A., Rice O.K. // J. Phys. Colloid Chem. 1951. V. 55. № 6. P. 894. https://doi.org/10.1021/j150489a013
  15. Marcus R.A. // J. Chem. Phys. 1952. V. 20. № 3. P. 359. https://doi.org/10.1063/1.1700424
  16. Baer T., Mayer P.M. // J. Am. Soc. Mass Spectrom. 1997. V. 8. № 2. P. 103. https://doi.org/10.1016/S1044-0305(96)00212-7
  17. Troe J. // J. Chem. Soc. Faraday Trans. 1997. V. 93. № 5. P. 885. https://doi.org/10.1039/A606453A
  18. Wieder G.M., Marcus R.A. // J. Chem. Phys. 1962. V. 37. № 8. P. 1835. https://doi.org/10.1063/1.1733376
  19. Marcus R.A. // J. Chem. Phys. 1965. V. 43. № 8. P. 2658. https://doi.org/10.1063/1.1697191
  20. Rosenstock H.M., Wallenstein M.B, Wahrhaftig A.L. et al. // Proc. Natl. Acad. Sci. 1952. V. 38. № 8. P. 667. https://doi.org/10.1073/pnas.38.8.667
  21. Rosenstock H.M. // J. Chem. Phys. 1961. V. 34. № 6. P. 2182. https://doi.org/10.1063/1.1731842
  22. Mozurkewich M., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6429. https://doi.org/10.1021/j150669a073
  23. Mozurkewich M., Lamb J.J., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6435. https://doi.org/10.1021/j150669a074
  24. Lamb J.J., Mozurkewich M., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6441. https://doi.org/10.1021/j150669a075
  25. Nordholm S. // Chem. Phys. 1989. V. 129. № 3. P. 371. https://doi.org/10.1016/0301-0104(89)85007-4
  26. Harrington R.E., Rabinovitch B.S., Diesen R.W. // J. Chem. Phys. 1960. V. 32. № 4. P. 1245. https://doi.org/10.1063/1.1730882
  27. Schneider F.W., Rabinovitch B.S. // J. Am. Chem. Soc. 1962. V. 84. № 22. P. 4215. https://doi.org/10.1021/ja00881a006
  28. Current J.H., Rabinovitch B.S. // J. Chem. Phys. 1963. V. 38. № 4. P. 783. https://doi.org/10.1063/1.1733764
  29. Haarhoff P.C. // Mol. Phys. 1963. V. 6. № 3. P. 337. https://doi.org/10.1080/00268976300100381
  30. Astholz D.C., Troe J., Wieters W. // J. Chem. Phys. 1979. V. 70. № 11. P. 5107. https://doi.org/10.1063/1.437352
  31. Stein S.E., Rabinovitch B.S. // J. Chem. Phys. 1973. V. 58. № 6. P. 2438. https://doi.org/10.1063/1.1679522
  32. Beyer T., Swinehart D.F. // Commun. ACM. 1973. V. 16. № 6. P. 379. https://doi.org/10.1145/362248.362275
  33. Rabinovitch B.S., Diesen R.W. // J. Chem. Phys. 1959. V. 30. № 3. P. 735. https://doi.org/10.1063/1.1730036
  34. Rabinovitch B.S., Current J.H. // J. Chem. Phys. 1961. V. 35. № 6. P. 2250. https://doi.org/10.1063/1.1732253
  35. Whitten G.Z., Rabinovitch B.S. // J. Chem. Phys. 1963. V. 38. № 10. P. 2466. https://doi.org/10.1063/1.1733526
  36. Thiele E. // J. Chem. Phys. 1963. V. 39. № 12. P. 3258. https://doi.org/10.1063/1.1734187
  37. Whitten G.Z., Rabinovitch B.S. // J. Chem. Phys. 1964. V. 41. № 6. P. 1883. https://doi.org/10.1063/1.1726175
  38. Tardy D.C., Rabinovitch B.S., Whitten G.Z. // J. Chem. Phys. 1968. V. 48. № 3. P. 1427. https://doi.org/10.1063/1.1668840
  39. Berblinger M., Schlier C. // J. Chem. Phys. 1992. V. 96. № 9. P. 6834. https://doi.org/10.1063/1.462572
  40. Lin S.H., Eyring H. // J. Chem. Phys. 1965. V. 43. № 6. P. 2153. https://doi.org/10.1063/1.1697098
  41. Tou J.C., Lin S.H. // J. Chem. Phys. 1968. V. 49. № 9. P. 4181. https://doi.org/10.1063/1.1670734
  42. Hoare M.R., Ruijgrok T.W. // J. Chem. Phys. 1970. V. 52. № 1. P. 113. https://doi.org/10.1063/1.1672655
  43. Hoare M.R. // J. Chem. Phys. 1970. V. 52. № 11. P. 5695. https://doi.org/10.1063/1.1672846
  44. Forst W. // Chem. Rev. 1971. V. 71. № 4. P. 339. https://doi.org/10.1021/cr60272a001
  45. Dubner H., Abate J. // J. ACM. 1968. V. 15. № 1. P. 115. https://doi.org/10.1145/321439.321446
  46. Hoare M.R., Pal P. // Mol. Phys. 1971. V. 20. № 4. P. 695. https://doi.org/10.1080/00268977100100661
  47. Bauer S.H. // J. Chem. Phys. 1939. V. 7. № 12. P. 1097. https://doi.org/10.1063/1.1750379
  48. Magee J.L., Hamill W.H. // J. Chem. Phys. 1959. V. 31. № 5. P. 1380. https://doi.org/10.1063/1.1730603
  49. Schlag E.W., Sandsmark R.A. // J. Chem. Phys. 1962. V. 37. № 1. P. 168. https://doi.org/10.1063/1.1732944
  50. Haarhoff P.C. // Mol. Phys. 1964. V. 7. № 2. P. 101. https://doi.org/10.1080/00268976300100871
  51. Forst W., Prášil Z., St. Laurent P. // J. Chem. Phys. 1967. V. 46. № 10. P. 3736. https://doi.org/10.1063/1.1840445
  52. Forst W. // J. Chem. Phys. 1968. V. 48. № 8. P. 3665. https://doi.org/10.1063/1.1669667
  53. Döntgen M. // AIP Adv. 2016. V. 6. № 9. 095318. https://doi.org/10.1063/1.4963921
  54. Lin S.H., Eyring H. // J. Chem. Phys. 1963. V. 39. № 6. P. 1577. https://doi.org/10.1063/1.1734483
  55. Kislov V.V., Nguyen T.L., Mebel A.M. et al. // J. Chem. Phys. 2004. V. 120. № 15. P. 7008. https://doi.org/10.1063/1.1676275
  56. Schlag E.W., Sandsmark R.A., Valance W.G. // J. Chem. Phys. 1964. V. 40. № 5. P. 1461. https://doi.org/10.1063/1.1725346
  57. Forst W., Práŝil Z. // J. Chem. Phys. 1969. V. 51. № 7. P. 3006. https://doi.org/10.1063/1.1672449
  58. Schmittroth L.A. // Commun. ACM. 1960. V. 3. № 3. P. 171. https://doi.org/10.1145/367149.367172
  59. Tolman R.C. The Principles of Statistical Mechanics. New York: Oxford University Press, 1938.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the root-mean-square error σ(W) for the H₂O molecule on the ratio Eₘₐₓ/Eᵤ.

下载 (29KB)
3. Fig. 2. Dependence of the lower values ​​of the function W(E ) for the H₂O molecule on the ratio Eₘₐₓ/Eᵤ: circles correspond to energy E = 5 kcal/mol; squares – E = 10 kcal/mol; diamonds – E =15 kcal/mol.

下载 (29KB)
4. Fig. 3. Dependence of the relative calculation error DW/W(E ) on the energy E for model systems: circles — H₂O molecule; squares — NH₃; diamonds — CD4; triangles — c-C₃H₆.

下载 (36KB)

版权所有 © Russian Academy of Sciences, 2025