Platinum dibromide complexes with 10-(aryl)phenoxarsines: synthesis, structure, luminescent and biological properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reactions of 10-(aryl)phenoxarsines (L1 = 10-(4-tolyl)phenoxarsine, L2 is 10-(4-fluorophenyl) phenoxarsine, L3 is 10-(3-fluorophenyl)phenoxarsine, and L4 is 10-(2-methoxyphenyl)phenoxarsine) with Pt(COD)Br2 afford platinum(II) complexes [Pt(L1–4)2Br2] (I–IV). The complexes are characterized by elemental analysis, IR spectroscopy, mass spectrometry, and NMR (1Н, 13С, 195Pt) spectroscopy. The Pt(II) complexes in solutions exist as two isomers mutually exchanging at a rate intermediate in the NMR time scale. The molecular structures of complexes cis-II · chloroform, trans-II, and cis-IV · dichloromethane are determined by XRD (CIF files CCDC nos. 2368769 (cis-II · chloroform), 2368770 (trans-II), and 2368771 (cis-IV · chloroform)). The platinum(II) dibromide complexes can crystallize as both cis and trans isomers. The study of the photophysical properties of the platinum(II) complexes shows that the trans isomers are characterized by emission in the orange spectral range, whereas the cis isomers almost does not luminesce. 10-(Aryl)phenoxarsines and their platinum(II) complexes are tested to cytotoxicity against the M-HeLa and HuTu 80 human cancer cell lines and hepatocyte-like cells of the Сhang liver line.

About the authors

M. F. Galimova

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Author for correspondence.
Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Russian Federation, Kazan

S. A. Kondrashova

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Russian Federation, Kazan

Sh. K. Latypov

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Russian Federation, Kazan

A. B. Dobrynin

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Russian Federation, Kazan

I. E. Kolesnikov

St. Petersburg State University

Email: milya1949@mail.ru

Center for Optical and Laser Materials Research

Russian Federation, St. Petersburg

A. P. Lyubina

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Russian Federation, Kazan

A. D. Voloshina

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Russian Federation, Kazan

E. I. Musina

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Russian Federation, Kazan

A. A. Karasik

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Russian Federation, Kazan

References

  1. Williams J.A.G., Develay S., Rochester D.L. et al. // Coord. Chem. Rev. 2008. V. 252. P. 2596.
  2. Qi L., Luo Q., Zhang Y. et al. // Chem. Res. Toxicol. 2019. V. 32. P.1469.
  3. Galanski M.S., Keppler B.K. // Anticancer Agents Med. Chem. 2007. V. 7. P. 55.
  4. Kostova I. // Recent Patents Anticancer Drug Discov. 2006. V. 1. P.1.
  5. Yamaguchi Y., Ding W., Sanderson C.T. et al. // Coord. Chem. Rev. 2007. V. 251. P. 515.
  6. Wong K.M.-C., Yam V.W.-W. // Coord. Chem. Rev. 2007. V. 251. P. 2477.
  7. Augustyn K.E., Stemp E.D.A., Barton J.K. // Inorg. Chem. 2007. V. 46. P. 9337.
  8. Forrest S.R., Thompson M.E. // Chem. Rev. 2007. V. 107. P. 923.
  9. Zhao Q., Li F., Huang C. // Chem. Soc. Rev. 2010. V. 39. P. 3007.
  10. Zhao J., Ji S., Wu W. et al. // RSC Adv. 2012. V. 2. P. 1712.
  11. Mauro M., Aliprandi A., Septiadi D. et al. // Chem. Soc. Rev. 2014. V. 43. P. 4144.
  12. Garner K.L., Parkes L.F., Piper J.D. et al. // Inorg. Chem. 2010. V. 49. P. 476.
  13. Pittkowski R., Strassner T. // Beilstein J. Org. Chem. 2018. V. 14. P. 664.
  14. Kirlikovali K.O., Axtell J.C., Anderson K. et al. // Organometallics. 2018. V. 37. P. 3122.
  15. Brooks J., Babayan Y., Lamansky S. et al. // Inorg. Chem. 2002. V. 41. P. 3055.
  16. Shou R.-E., Chai W.-X., Song L. et al. // J. Cluster Sci. 2017. V. 28. P. 2185.
  17. Tseng C.-H., Fox M.A., Liao J.-L. et al. // J. Mater. Chem. C. 2017. V. 5. P. 1420.
  18. Yam V.W.-W., Law A.S.-Y. // Coord. Chem. Rev. 2020. V. 414. P. 213.
  19. Cebrián C., Mauro M. // Beilstein J. Org. Chem. 2018. V. 14. P. 1459.
  20. Yam V.W.-W., Chan K.H.-Y., Wong K.M.-C. et al. // Angew. Chem. Int. Ed. 2006. V. 45. P. 6169.
  21. Zhang Z.-H., Liu J., Wan L.-Q. et al. // Dalton Trans. 2015. V. 44. P. 7785.
  22. Williams J.A.G., Beeby A., Davies E.S. et al. // Inorg. Chem. 2003. V. 42. P. 8609.
  23. Hebenbrock M., González-Abradelo D., Strassert C.A. et al. // Z. Anorg. Allg. Chem. 2008. V. 644. P. 671.
  24. Imoto H., Tanaka S., Kato N. et al. // Organometallics. 2016. V. 35. P. 364.
  25. Galimova M.F., Begaliev T.A., Zueva E.M. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6804.
  26. Lachachi M.B., Benabdallah T., Aguiar P.M. et al. // Dalton Trans. 2015. V. 44. P. 11919.
  27. Гаврилов В.И., Гаврилова Г.Р., Хлебников В.Н. и др. // Изв. вузов. Сер. Химия и хим. технология. 1973. T. 12. № 10. C. 1602.
  28. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158.
  29. Dolg M., Wedig U., Stoll, H. et al. // J. Chem. Phys. 1987. V. 86. P. 866.
  30. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Revision B.04. Pittsburgh (PA): Gaussian Inc., 2003
  31. Sheldrick G.M. SADABS. Program for Empirical X-ray Absorption Correction. Bruker-Nonius, 1990–2004.
  32. Altomare A., Cascarano G., Giacovazzo C. et al. // Acta Crystallogr. A. 1991. V. 47. P. 744.
  33. Sheldrick G. SHELX-97: Programs for Сrystal Structure Analysis. Göttingen (Germany): Göttingen University, 1997.
  34. Farrugia L.J. // J. Appl. Crystallogr. 1999. V. 32. P. 837.
  35. APEX2 (version 2.1). SAINTPlus. Data Reduction and Correction Program (version 7.31A). Madison (WI, USA): Bruker Advansed X-ray Solutions, BrukerAXS Inc., 2006.
  36. Voloshina A.D., Semenov V.E., Strobykina A.S. et al. // Russ. J. Bioorg. 2017. V. 43. P. 170.
  37. Dub P.A., Filippov O.A., Belkova N.V. et al. // J. Phys.Chem. A. 2009. V. 113. P. 6348.
  38. Moldovan N., Lönnecke P., Silaghi-Dumitrescu I. et al. // Inorg. Chem. 2008. V. 47. P. 1524.
  39. Imoto H., Sasaki H., Tanaka S. et al. // Organometallics. 2017. V. 36. P. 2605.
  40. Galimova M.F., Burdina K.A., Dobrynin A.B. et al. // Inorg. Chim. Acta. 2024. V. 563. P. 121896.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional Materials
Download (3MB)

Copyright (c) 2025 Российская академия наук