Structural analysis of LZTFL1 protein by the principal component analysis method (PCA-seq)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The single-nucleotide mutation rs17713054G>A in the promoter region of LZTFL1 (leucine zipper transcription factor like 1) gene is a factor in the severe course of coronavirus infection COVID-19. Computer statistical analysis of the gene by principal component analysis (PCA-seq) revealed the presence of a high correlation between the first principal component of the translated amino acid sequence and eleven amino acid indices of the AAindex database, characterizing the physicochemical and biochemical properties of the protein. The indices BEGF750102, CHOP780209, PALJ810110, GEIM800107, QIAN880121, LEVM780102, PRAM900103 are associated with β-folding parameters. The LZTFL1 protein is part of the Bardet-Biedl Syndrome (BBS) protein complexes that regulate intracellular transport in the ciliated epithelium of the lungs. It is assumed that the presence of β-sheet elements in the structure of the LZTFL1 protein plays an important role in ACE2 receptor-mediated endocytosis, stimulating the rate of angiotensin-converting enzyme 2 recycling and accelerating the delivery of adherented coronavirus SARS-CoV-2 virions into the cell during the initiation of severe acute respiratory syndrome COVID-19.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Khegay

Federal Research Center Institute of Cytology and Genetics, Siberian Branch, RAS

Хат алмасуға жауапты Автор.
Email: khegay@bionet.nsc.ru
Ресей, prosp. Akad. Lavrentieva 10, Novosibirsk, 630090

X. Yu

Novosibirsk State University

Email: khegay@bionet.nsc.ru
Ресей, ul. Pirogova 2, Novosibirsk, 630090

V. Efremov

Federal Research Center Institute of Cytology and Genetics, Siberian Branch, RAS; Novosibirsk State University

Email: khegay@bionet.nsc.ru
Ресей, prosp. Akad. Lavrentieva 10, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

Әдебиет тізімі

  1. Seo S., Zhang Q., Bugge K., Breslow D.K., Searby C.C., Nachury M.V., Sheffield V.C. // PLoS Genet. 2011. V. 7. P. e1002358. https://doi.org/10.1371/journal.pgen.1002358
  2. Huang Q., Li W., Zhou Q., Awasthi P., Cazin C., Yap Y., Mladenovic-Lucas L., Hu B., Jeyasuria P., Zhang L., Granneman J.G., Hess R.A., Ray P.F., Kherraf Z.-E., Natarajan V., Zhang Z. // Dev. Biol. 2021. V. 477. P. 164–176. https://doi.org/10.1016/j.ydbio.2021.05.006
  3. Fliegauf M., Benzing T., Omran H. // Nat. Rev. Mol. Cell Biol. 2007. V. 8. P. 880–893. https://doi.org/10.1038/nrm2278
  4. Lyu Q., Li Q., Zhou J., Zhao H. // J. Cell Biol. 2024. V. 223. P. e202307150. https://doi.org/10.1083/jcb.202307150
  5. Downes D.J., Cross A.R., Hua P., Roberts N., Schwessinger R., Cutler A.J., Munis A.M., Brown J., Mielczarek O., de Andrea C.E., Melero I., COMBAT Consortium, Gill D.R., Hyde S.C., Knight J.C., Todd J.A., Sansom S.N., Issa F., Davies J.O.J., Hughes J.R. // Nat. Genet. 2021. V. 53. P. 1606–1615. https://doi.org/10.1038/s41588-021-00955-3
  6. Anderson R.M., Heesterbeek H., Klinkenberg D., Déirdre Hollingsworth T.D. // Lancet. 2020. V. 395. P. 931–934. https://doi.org/10.1016/S0140-6736(20)30567-5
  7. Tang X., Wu C., Li X., Song Y., Yao X., Wu X., Duan Y., Zhang H., Wang Y., Qian Z., Cui J., Lu J. // Natl. Sci. Rev. 2020. V. 7. P. 1012–1023. https://doi.org/10.1093/nsr/nwaa036
  8. Hu B., Guo H., Zhou P., Shi Z.-L. // Nat. Rev. Microbiol. 2021. V. 19. P. 141–154. https://doi.org/10.1038/s41579-020-00459-7
  9. Lu J., Sun P.D. // J. Biol. Chem. 2020. V. 295. P. 18579– 18588. https://doi.org/10.1074/jbc.RA120.015303
  10. Lan J., Ge J., Yu J., Shan S., Zhou H., Fan S., Zhang Q., Shi X., Wang Q., Zhang L., Wang X. // Nature. 2020. V. 581. P. 215–220. https://doi.org/10.1038/s41586-020-2180-5
  11. Hajizadeh F., Khanizadeh S., Khodadadi H., Mokhayeri Y., Ajorloo M., Malekshahi A., Heydaria E. // Microb. Pathog. 2022. V. 168. P. 105595. https://doi.org/10.1016/j.micpath.2022.105595
  12. Wysocki J., Schulze A., Batlle D. // Biomolecules. 2019. V. 9. P. 886. https://doi.org/10.3390/biom9120886
  13. Lu J., Sun P.D. // J. Biol. Chem. 2020. V. 295. P. 18579– 18588. https://doi.org/10.1074/jbc.RA120.015303
  14. Guy J.L., Lambert D.W., Warner F.J., Hooper N.M., Turner A.J. // Biochim. Biophys. Acta. 2005. V. 1751. P. 2–8. https://doi.org/10.1016/j.bbapap.2004.10.010
  15. Iwasaki M., Saito J., Zhao H., Sakamoto A., Hirota K., Ma D. // Inflammation. 2021. V. 44. P. 13–34. https://doi.org/10.1007/s10753-020-01337-3
  16. Ren Y., Lv L., Li P., Zhang L. // J. Infect. 2022. V. 85. P. e21–e23. https://doi.org/10.1016/j.jinf.2022.04.019
  17. Klink B.U., Gatsogiannis C., Hofnagel O., Wittinghofer A., Raunser S. // eLife. 2020. V. 9. P. e53910. https://doi.org/10.7554/eLife.53910
  18. Muller J., Stoetzel C., Vincent M.C., Leitch C.C., Laurier V., Danse J.M., Hellé S., Marion V., Bennouna-Greene V., Vicaire S., Megarbane A., Kaplan J., Drouin-Garraud V., Hamdani M., Sigaudy S., Francannet C., Roume J., Bitoun P., Goldenberg A., Philip N., Odent S., Green J., Cossée M., Davis E.E., Katsanis N., Bonneau D., Verloes A., Poch O., Mandel J.L., Dollfus H. // Hum. Genet. 2010. V. 127. P. 583–593. https://doi.org/10.1007/s00439-010-0804-9
  19. Liu P., Lechtreck K.F. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. E934–E943. https://doi.org/10.1073/pnas.1713226115
  20. Jin H., White S.R., Shida T., Schulz S., Aguiar M., Gygi S.P., Bazan J.F., Nachury M.V. // Cell. 2010. V. 141. P. 1208–1219. https://doi.org/10.1016/j.cell.2010.05.015
  21. Pereira J., Lupas A.N. // Front. Mol. Biosci. 2022. V. 9. P. 895496. https://doi.org/10.3389/fmolb.2022.895496.
  22. Ефимов В.М., Ефимов К.В., Ковалева В.Ю. // Вавиловский журнал генетики и селекции. 2019. Т. 23. С. 1032–1036. https://doi.org/10.18699/VJ19.584
  23. Takens F. // Dynamical Systems and Turbulence, Lecture Notes in Mathematics. 1981. V. 898. P. 366– 381. https://doi.org/10.1007/BFb0091924
  24. Gower J.C. // Biometrika. 1966. V. 53. P. 325–338. https://doi.org/10.1093/biomet/53.3-4.325
  25. Cavalli-Sforza L.L., Menozzi P., Piazza A. // J. Asian Studies. 1995. V. 54. P. 2173–2219. https://doi.org/10.2307/2058750
  26. Kawashima S., Pokarowski P., Pokarowska M., Kolinski A., Katayama T., Kanehisa M. // Nucleic Acids Res. 2008. V. 36. P. D202–D205. https://doi.org/10.1093/nar/gkm998
  27. Benjamini Y., Hochberg Y. // J. R. Statist. Soc. B. 1995. V. 57. P. 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  28. Hammer Ø., Harper D.A., Ryan P.D. // Palaeontologia Electronica. 2001. V. 4. P. 1–9. https://palaeo-electronica.org/2001_1/past/issue1_01.htm
  29. Polunin D., Shtaiger I., Efimov V. // bioRxiv. 2019. P. 803684. https://doi.org/10.1101/803684

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dynamics of positional variability of the first principal component of the amino acid sequence of the LZTFL1 protein (top) and normalized amino acid indices (bottom). The gray background indicates the scatter of data.

Жүктеу (178KB)

© Russian Academy of Sciences, 2024