Therapeutic Potential and Application Prospects of Antimicrobial Peptides in the Era of Global Spread of Antibiotic Resistance
- Авторлар: Safronova V.N.1, Bolosov I.A.1, Panteleev P.V.1, Balandin S.V.1, Ovchinnikova T.V.1
-
Мекемелер:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Шығарылым: Том 49, № 3 (2023)
- Беттер: 243-258
- Бөлім: Articles
- URL: https://archivog.com/0132-3423/article/view/670605
- DOI: https://doi.org/10.31857/S0132342323030181
- EDN: https://elibrary.ru/PEADRY
- ID: 670605
Дәйексөз келтіру
Аннотация
In the era of the growing global threat of antibiotic resistance, antimicrobial peptides (AMPs) are considered as new generation drugs for treatment of various infectious diseases. In this review, AMPs are seen as an alternative to traditional antibiotics, many of which have already lost or are gradually reducing their effectiveness against a number of critically important pathogenic microorganisms. Recent outbreaks of secondary infections during the COVID-19 pandemic have increased the interest in AMPs due to an acute shortage of effective agents against bacterial and fungal infections. The review summarized current data on clinical studies of AMPs, assembled a list of developed drugs based on AMPs at various stages of clinical trials, highlighted the urgency of study of new AMPs, and systematized the most relevant clinical data and application of AMPs.
Авторлар туралы
V. Safronova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: arenicin@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
I. Bolosov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: arenicin@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
P. Panteleev
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: arenicin@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
S. Balandin
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: arenicin@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
T. Ovchinnikova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: arenicin@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
Әдебиет тізімі
- Ventola C.L. // P T. 2015. V. 40. P. 277–283.
- Ma Y., Wang C., Li Y., Li J., Wan Q., Chen J., Tay F.R., Niu L. // Adv. Sci. 2020. V. 7. P. 1901872. https://doi.org/10.1002/advs.201901872
- Lewis K. // Nat. Rev. Drug Dis. 2013. V. 12. P. 371–387. https://doi.org/10.1038/nrd3975
- Lloyd D.H. // Vet. Dermatol. 2012. V. 23. P. 299-e60. https://doi.org/10.1111/j.1365-3164.2012.01042.x
- Munguia J., Nizet V. // Trend. Pharmacol. Sci. 2017. V. 38. P. 473–488. https://doi.org/10.1016/j.tips.2017.02.003
- Johnson B.K., Abramovitch R.B. // Trend. Pharmacol. Sci. 2017. V. 38. P. 339–362. https://doi.org/10.1016/j.tips.2017.01.004
- Ventola C.L. // P T. 2015. V. 40. P. 344–352.
- Yeung A.T.Y., Gellatly S.L., Hancock R.E.W. // Cell. Mol. Life Sci. 2011. V. 68. P. 2161–2176. https://doi.org/10.1007/s00018-011-0710-x
- Peters B.M., Shirtliff M.E., Jabra-Rizk M.A. // PLoS Pathog. 2010. V. 6. P. e1001067. https://doi.org/10.1371/journal.ppat.1001067
- Zasloff M. // Nature. 2002. V. 415. P. 389–395. https://doi.org/10.1038/415389a
- de la Fuente-Núñez C., Cardoso M.H., de Souza Cândido E., Franco O.L., Hancock R.E.W. // Biochim. Biophys. Acta. 2016. V. 1858. P. 1061–1069. https://doi.org/10.1016/j.bbamem.2015.12.015
- Batoni G., Maisetta G., Brancatisano F.L., Esin S., Campa M. // Curr. Med. Chem. 2011. V. 18. P. 256–279. https://doi.org/10.2174/092986711794088399
- Lai Y., Gallo R.L. // Trend. Immunol. 2009. V. 30. P. 131–141. https://doi.org/10.1016/j.it.2008.12.003
- Pütsep K., Carlsson G., Boman H.G., Andersson M. // Lancet. 2002. V. 360. P. 1144–1149. https://doi.org/10.1016/S0140-6736(02)11201-3
- Wehkamp J., Salzman N.H., Porter E., Nuding S., Weichenthal M., Petras R.E., Shen B., Schaeffeler E., Schwab M., Linzmeier R. // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 18129–18134. https://doi.org/10.1073/pnas.0505256102
- Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y.-H., Homey B., Cao W., Wang Y.-H., Su B., Nestle F.O. // Nature. 2007. V. 449. P. 564–569. https://doi.org/10.1038/nature06116
- Hancock R.E.W., Haney E.F., Gill E.E. // Nat. Rev. Immunol. 2016. V. 16. P. 321–334. https://doi.org/10.1038/nri.2016.29
- Cotter P.D., Ross R.P., Hill C. // Nat. Rev. Microbiol. 2013. V. 11. P. 95–105. https://doi.org/10.1038/nrmicro2937
- Ríos Colombo N.S., Chalón M.C., Navarro S.A., Bellomio A. // Curr. Genet. 2018. V. 64. P. 345–351. https://doi.org/10.1007/s00294-017-0757-9
- Chikindas M.L., Weeks R., Drider D., Chistyakov V.A., Dicks L.M. // Curr. Opin. Biotechnol. 2018. V. 49. P. 23–28. https://doi.org/10.1016/j.copbio.2017.07.011
- Teixeira V., Feio M.J., Bastos M. // Prog. Lipid Res. 2012. V. 51. P. 149–177. https://doi.org/10.1016/j.plipres.2011.12.005
- Joo H.-S., Fu C.-I., Otto M. // Philos. Trans. R Soc. Lond. B Biol. Sci. 2016. V. 371. P. 20150292. https://doi.org/10.1098/rstb.2015.0292
- Habets M.G.J.L., Brockhurst M.A. // Biol. Lett. 2012. V. 8. P. 416–418. https://doi.org/10.1098/rsbl.2011.1203
- Le C.-F., Fang C.-M., Sekaran S.D. // Antimicrob. Agents Chemother. 2017. V. 61. P. e02340-16. https://doi.org/10.1128/AAC.02340-16
- Vetterli S.U., Zerbe K., Müller M., Urfer M., Mondal M., Wang S.-Y., Moehle K., Zerbe O., Vitale A., Pessi G. // Sci. Adv. 2018. V. 4. P. eaau2634. https://doi.org/10.1126/sciadv.aau2634
- Seefeldt A.C., Graf M., Pérébaskine N., Nguyen F., Arenz S., Mardirossian M., Scocchi M., Wilson D.N., Innis C.A. // Nucleic Acids Res. 2016. V. 44. P. 2429–2438. https://doi.org/10.1093/nar/gkv1545
- Cassone M., Otvos L. // Expert Rev. Anti-Infect. Ther. 2010. V. 8. P. 703–716. https://doi.org/10.1586/eri.10.38
- Zharkova M.S., Orlov D.S., Golubeva O.Yu., Chakchir O.B., Eliseev I.E., Grinchuk T.M., Shamova O.V. // Front. Cell. Infect. Microbiol. 2019. V. 9. P. 128. https://doi.org/10.3389/fcimb.2019.00128
- Ma B., Fang C., Lu L., Wang M., Xue X., Zhou Y., Li M., Hu Y., Luo X., Hou Z. // Nat. Commun. 2019. V. 10. P. 3517. https://doi.org/10.1038/s41467-019-11503-3
- Dobias J., Poirel L., Nordmann P. // Clin. Microbiol. Infect. 2017. V. 23. P. 676.e1–676.e5. https://doi.org/10.1016/j.cmi.2017.03.015
- Theuretzbacher U., Outterson K., Engel A., Karlén A. // Nat. Rev. Microbiol. 2020. V. 18. P. 275–285. https://doi.org/10.1038/s41579-019-0288-0
- Andersson D.I., Hughes D., Kubicek-Sutherland J.Z. // Drug Resist. Updat. 2016. V. 26. P. 43–57. https://doi.org/10.1016/j.drup.2016.04.002
- Mahlapuu M., Håkansson J., Ringstad L., Björn C. // Front. Cell. Infect. Microbiol. 2016. V. 6. P. 194. https://doi.org/10.3389/fcimb.2016.00194
- Atefyekta S., Blomstrand E., Rajasekharan A.K., Svensson S., Trobos M., Hong J., Webster T.J., Thomsen P., Andersson M. // ACS Biomater. Sci. Eng. 2021. V. 7. P. 1693–1702. https://doi.org/10.1021/acsbiomaterials.1c00029
- Luong H.X., Thanh T.T., Tran T.H. // Life Sci. 2020. V. 260. P. 118407. https://doi.org/10.1016/j.lfs.2020.118407
- Fosgerau K., Hoffmann T. // Drug Dis. Today. 2015. V. 20. P. 122–128. https://doi.org/10.1016/j.drudis.2014.10.003
- Greco I., Molchanova N., Holmedal E., Jenssen H., Hummel B.D., Watts J.L., Håkansson J., Hansen P.R., Svenson J. // Sci. Rep. 2020. V. 10. P. 13206. https://doi.org/10.1038/s41598-020-69995-9
- Ahmed T.A.E., Hammami R. // J. Food Biochem. 2019. V. 43. P. e12546. https://doi.org/10.1111/jfbc.12546
- Edwards I.A., Elliott A.G., Kavanagh A.M., Zuegg J., Blaskovich M.A.T., Cooper M.A. // ACS Infect. Dis. 2016. V. 2. P. 442–450. https://doi.org/10.1021/acsinfecdis.6b00045
- Schmitt P., Rosa R.D., Destoumieux-Garzón D. // Biochim. Biophys. Acta. 2016. V. 1858. P. 958–970. https://doi.org/10.1016/j.bbamem.2015.10.011
- Marr A., Gooderham W., Hancock R. // Curr. Opin. Pharmacol. 2006. V. 6. P. 468–472. https://doi.org/10.1016/j.coph.2006.04.006
- Cao J., de la Fuente-Nunez C., Ou R.W., Torres M.D.T., Pande S.G., Sinskey A.J., Lu T.K. // ACS Synth. Biol. 2018. V. 7. P. 896–902. https://doi.org/10.1021/acssynbio.7b00396
- Dijksteel G.S., Ulrich M.M.W., Middelkoop E., Boekema B.K.H.L. // Front. Microbiol. 2021. V. 12. P. 616979. https://doi.org/10.3389/fmicb.2021.616979
- Divyashree M., Mani M.K., Reddy D., Kumavath R., Ghosh P., Azevedo V., Barh D. // Protein Pept. Lett. 2020. V. 27. P. 120–134. https://doi.org/10.2174/0929866526666190925152957
- Browne K., Chakraborty S., Chen R., Willcox M.D., Black D.S., Walsh W.R., Kumar N. // Int. J. Mol. Sci. 2020. V. 21. P. 7047. https://doi.org/10.3390/ijms21197047
- Magana M., Pushpanathan M., Santos A.L., Leanse L., Fernandez M., Ioannidis A., Giulianotti M.A., Apidianakis Y., Bradfute S., Ferguson A.L. // Lancet Infect. Dis. 2020. V. 20. P. e216–e230. https://doi.org/10.1016/S1473-3099(20)30327-3
- Erdem Büyükkiraz M., Kesmen Z. // J. Appl. Microbiol. 2022. V. 132. P. 1573–1596. https://doi.org/10.1111/jam.15314
- Mercer D.K., O’Neil D.A. // Front. Immunol. 2020. V. 11. P. 2177. https://doi.org/10.3389/fimmu.2020.02177
- Mookherjee N., Anderson M.A., Haagsman H.P., Davidson D.J. // Nat. Rev. Drug. Discov. 2020. V. 19. P. 311–332. https://doi.org/10.1038/s41573-019-0058-8
- Jiang Y., Chen Y., Song Z., Tan Z., Cheng J. // Adv. Drug Deliv. Rev. 2021. V. 170. P. 261–280. https://doi.org/10.1016/j.addr.2020.12.016
- Lesiuk M., Paduszyńska M., Greber K.E. // Antibiotics. 2022. V. 11. P. 1062. https://doi.org/10.3390/antibiotics11081062
- Moretta A., Scieuzo C., Petrone A.M., Salvia R., Manniello M.D., Franco A., Lucchetti D., Vassallo A., Vogel H., Sgambato A. // Front. Cell. Infect. Microbiol. 2021. V. 11. P. 668632. https://doi.org/10.3389/fcimb.2021.668632
- Boakes S., Appleyard A.N., Cortés J., Dawson M.J. // J. Antibiot. (Tokyo). 2010. V. 63. P. 351–358. https://doi.org/10.1038/ja.2010.48
- Crowther G.S., Baines S.D., Todhunter S.L., Freeman J., Chilton C.H., Wilcox M.H. // J. Antimicrob. Chemother. 2013. V. 68. P. 168–176. https://doi.org/10.1093/jac/dks359
- Li X.S., Reddy M.S., Baev D., Edgerton M. // J. Biol. Chem. 2003. V. 278. P. 28553–28561. https://doi.org/10.1074/jbc.M300680200
- Jang W.S., Li X.S., Sun J.N., Edgerton M. // Antimicrob. Agents Chemother. 2008. V. 52. P. 497–504. https://doi.org/10.1128/AAC.01199-07
- Cheng K.-T., Wu C.-L., Yip B.-S., Chih Y.-H., Peng K.-L., Hsu S.-Y., Yu H.-Y., Cheng J.-W. // Int. J. Mol. Sci. 2020. V. 21. P. 2654. https://doi.org/10.3390/ijms21072654
- Nell M.J., Tjabringa G.S., Wafelman A.R., Verrijk R., Hiemstra P.S., Drijfhout J.W., Grote J.J. // Peptides. 2006. V. 27. P. 649–660. https://doi.org/10.1016/j.peptides.2005.09.016
- Chen Y., Mant C.T., Farmer S.W., Hancock R.E.W., Vasil M.L., Hodges R.S. // J. Biol. Chem. 2005. V. 280. P. 12316–12329. https://doi.org/10.1074/jbc.M413406200
- Zhang L., Benz R., Hancock R.E. // Biochemistry. 1999. V. 38. P. 8102–8111. https://doi.org/10.1021/bi9904104
- AB Naafs M. // Biomed. J. Sci. Tech. Res. 2018. V. 7. P. 6038–6042. https://doi.org/10.26717/BJSTR.2018.07.001536
- Wei Y., Wu J., Chen Y., Fan K., Yu X., Li X., Zhao Y., Li Y., Lv G., Song G. // Ann. Surg. 2022. V. 277(1). P. 43–49. https://doi.org/10.1097/SLA.0000000000005508
- Schmidtchen A., Pasupuleti M., Mörgelin M., Davoudi M., Alenfall J., Chalupka A., Malmsten M. // J. Biol. Chem. 2009. V. 284. P. 17584–17594. https://doi.org/10.1074/jbc.M109.011650
- Boge L., Umerska A., Matougui N., Bysell H., Ringstad L., Davoudi M., Eriksson J., Edwards K., Andersson M. // Int. J. Pharm. 2017. V. 526. P. 400–412. https://doi.org/10.1016/j.ijpharm.2017.04.082
- Nordström R., Nyström L., Andrén O.C.J., Malkoch M., Umerska A., Davoudi M., Schmidtchen A., Malmsten M. // J. Colloid Interface Sci. 2018. V. 513. P. 141–150. https://doi.org/10.1016/j.jcis.2017.11.014
- Mercer D.K., Stewart C.S., Miller L., Robertson J., Duncan V.M.S., O’Neil D.A. // Antimicrob. Agents Chemother. 2019. V. 63. P. e02117-18. https://doi.org/10.1128/AAC.02117-18
- Turner J., Cho Y., Dinh N.-N., Waring A.J., Lehrer R.I. // Antimicrob. Agents Chemother. 1998. V. 42. P. 2206–2214.
- Kos S., Vanvarenberg K., Dolinsek T., Cemazar M., Jelenc J., Préat V., Sersa G., Vandermeulen G. // Bioelectrochemistry. 2017. V. 114. P. 33–41. https://doi.org/10.1016/j.bioelechem.2016.12.002
- Kowalski R.P., Romanowski E.G., Yates K.A., Mah F.S. // J. Ocul. Pharmacol. Ther. 2016. V. 32. P. 23–27. https://doi.org/10.1089/jop.2015.0098
- Isaksson J., Brandsdal B.O., Engqvist M., Flaten G.E., Svendsen J.S.M., Stensen W. // J. Med. Chem. 2011. V. 54. P. 5786–5795. https://doi.org/10.1021/jm200450h
- Saravolatz L.D., Pawlak J., Johnson L., Bonilla H., Saravolatz L.D., Fakih M.G., Fugelli A., Olsen W.M. // Antimicrob. Agents Chemother. 2012. V. 56. P. 4478–4482. https://doi.org/10.1128/AAC.00194-12
- Saravolatz L.D., Pawlak J., Martin H., Saravolatz S., Johnson L., Wold H., Husbyn M., Olsen W.M. // Lett. Appl. Microbiol. 2017. V. 65. P. 410–413. https://doi.org/10.1111/lam.12792
- Bojsen R., Torbensen R., Larsen C.E., Folkesson A., Regenberg B. // PLoS One. 2013. V. 8. P. e69483. https://doi.org/10.1371/journal.pone.0069483
- Tew G.N., Liu D., Chen B., Doerksen R.J., Kaplan J., Carroll P.J., Klein M.L., DeGrado W.F. // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 5110–5114. https://doi.org/10.1073/pnas.082046199
- Kaplan C.W., Sim J.H., Shah K.R., Kolesnikova-Kaplan A., Shi W., Eckert R. // Antimicrob. Agents Chemother. 2011. V. 55. P. 3446–3452. https://doi.org/10.1128/AAC.00342-11
- Melo M., Dugourd D., Castanho M. // Recent Patents Anti-Infect. Drug Discov. 2006. V. 1. P. 201–207. https://doi.org/10.2174/157489106777452638
- Lorenzi T., Trombettoni M.M.C., Ghiselli R., Paolinelli F., Gesuita R., Cirioni O., Provinciali M., Kamysz W., Kamysz E., Piangatelli C. // Am. J. Transl. Res. 2017. V. 9. P. 3374–3386.
- Sader H.S., Fedler K.A., Rennie R.P., Stevens S., Jones R.N. // Antimicrob. Agents Chemother. 2004. V. 48. P. 3112–3118. https://doi.org/10.1128/AAC.48.8.3112-3118.2004
- Butler M.S., Blaskovich M.A., Cooper M.A. // J. Antibiot. 2013. V. 66. P. 571–591. https://doi.org/10.1038/ja.2013.86
- Martin-Loeches I., Dale G.E., Torres A. // Exp. Rev. Anti-Infect. Ther. 2018. V. 16. P. 259–268. https://doi.org/10.1080/14787210.2018.1441024
- Srinivas N., Jetter P., Ueberbacher B.J., Werneburg M., Zerbe K., Steinmann J., Van der Meijden B., Bernardini F., Lederer A., Dias R.L.A. // Science. 2010. V. 327. P. 1010–1013. https://doi.org/10.1126/science.1182749
- Kong Q., Yang Y. // Bioorg. Med. Chem. Lett. 2021. V. 35. P. 127799. https://doi.org/10.1016/j.bmcl.2021.127799
- Sader H.S., Dale G.E., Rhomberg P.R., Flamm R.K. // Antimicrob. Agents Chemother. 2018. V. 62. P. e00311-18. https://doi.org/10.1128/AAC.00311-18
- Sader H.S., Flamm R.K., Dale G.E., Rhomberg P.R., Castanheira M. // J. Antimicrob. Chemother. 2018. V. 73. P. 2400–2404. https://doi.org/10.1093/jac/dky227
- Giles F.J., Redman R., Yazji S., Bellm L. // Exp. Opin. Invest. Drugs. 2002. V. 11. P. 1161–1170. https://doi.org/10.1517/13543784.11.8.1161
- Gottler L.M., Ramamoorthy A. // Biochim. Biophys. Acta. 2009. V. 1788. P. 1680–1686. https://doi.org/10.1016/j.bbamem.2008.10.009
- Chalekson C.P., Neumeister M.W., Jaynes J. // J. Trauma. 2003. V. 54. P. 770–774. https://doi.org/10.1097/01.TA.0000047047.79701.6D
- Ballweber L.M., Jaynes J.E., Stamm W.E., Lampe M.F. // Antimicrob. Agents Chemother. 2002. V. 46. P. 34–41. https://doi.org/10.1128/AAC.46.1.34-41.2002
- Chalekson C.P., Neumeister M.W., Jaynes J. // Plast. Reconstr. Surg. 2002. V. 109. P. 1338–1343. https://doi.org/10.1097/00006534-200204010-00020
- Sandiford S.K. // Exp. Opin. Drug Dis. 2019. V. 14. P. 71–79. https://doi.org/10.1080/17460441.2019.1549032
- de la Fuente-Núñez C., Reffuveille F., Mansour S.C., Reckseidler-Zenteno S.L., Hernández D., Brackman G., Coenye T., Hancock R.E.W. // Chem. Biol. 2015. V. 22. P. 196–205. https://doi.org/10.1016/j.chembiol.2015.01.002
- Han Y., Zhang M., Lai R., Zhang Z. // Peptides. 2021. V. 146. P. 170666. https://doi.org/10.1016/j.peptides.2021.170666
- Henninot A., Collins J.C., Nuss J.M. // J. Med. Chem. 2018. V. 61. P. 1382–1414. https://doi.org/10.1021/acs.jmedchem.7b00318
- Lazzaro B.P., Zasloff M., Rolff J. // Science. 2020. V. 368. P. eaau5480. https://doi.org/10.1126/science.aau5480
- Mercer D.K., Torres M.D.T., Duay S.S., Lovie E., Simpson L., von Köckritz-Blickwede M., de la Fuente-Nunez C., O’Neil D.A., Angeles-Boza A.M. // Front. Cell. Infect. Microbiol. 2020. V. 10. P. 326. https://doi.org/10.3389/fcimb.2020.00326
- Murugaiyan J., Kumar P.A., Rao G.S., Iskandar K., Hawser S., Hays J.P., Mohsen Y., Adukkadukkam S., Awuah W.A., Jose R.A.M. // Antibiotics. 2022. V. 11. P. 200. https://doi.org/10.3390/antibiotics11020200
- Gan B.H., Gaynord J., Rowe S.M., Deingruber T., Spring D.R. // Chem. Soc. Rev. 2021. V. 50. P. 7820–7880. https://doi.org/10.1039/D0CS00729C
- Duong L., Gross S.P., Siryaporn A. // Front. Med. Technol. 2021. V. 3. P. 640981. https://doi.org/10.3389/fmedt.2021.640981
- Czaplewski L., Bax R., Clokie M., Dawson M., Fairhead H., Fischetti V.A., Foster S., Gilmore B.F., Hancock R.E.W., Harper D. // Lancet Infect. Dis. 2016. V. 16. P. 239–251. https://doi.org/10.1016/S1473-3099(15)00466-1
- Nang S.C., Li J., Velkov T. // Crit. Rev. Microbiol. 2019. V. 45. P. 131–161. https://doi.org/10.1080/1040841X.2018.1492902
- Han J.E., Alvarez J.A., Jones J.L., Tangpricha V., Brown M.A., Hao L., Brown L.A.S., Martin G.S., Ziegler T.R. // Nutrition. 2017. V. 38. P. 102–108. https://doi.org/10.1016/j.nut.2017.02.002
Қосымша файлдар
