Development of a fluorescence contrasting immunostaining technique for visualizing 3D astrocytic ultramorphology
- Authors: Mochalov К.Е.1, Sutyagina О.I.1,2, Altunina А.V.1,3, Solovieva D.О.1, Efimov А.Е.4, Zhuchkov V.A.1, Chumakov S.P.1, Oleinikov V.A.1,5
-
Affiliations:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs
- National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)
- Issue: Vol 50, No 5 (2024)
- Pages: 591-600
- Section: Articles
- URL: https://archivog.com/0132-3423/article/view/670786
- DOI: https://doi.org/10.31857/S0132342324050027
- EDN: https://elibrary.ru/LSDJAJ
- ID: 670786
Cite item
Abstract
Changes in astrocytic ultramorphology may underlie the development of neurodegenerative processes in their early stages. However, the mechanisms of its change are still poorly understood, since the size of the peripheral astrocytic processes forming the basis of the astrocytic synaptic coating are beyond the resolution of most optical microscopy (OM) methods. In turn, the disadvantage of promising methods of electron and scanning probe microscopy (EM and SPM) for such studies is the inability to determine the target area of the study due to the simultaneous use of fluorescence microscopy of immunocolored cells and the possibility of full-fledged 3D analysis of samples. In this paper, we consider the concept of solving the above problem by using an instrumental approach that combines the methods of SPM and OM together with ultramicrotomy as a method of restoring the 3D structure of the sample within a single hardware complex. To implement the proposed combined technique (optical-probe nanotomography, OPNT), the first stage of creating specialized fluorescent-contrasting labels based on conjugates of fluorescent semiconductor nanocrystals and single-domain antibodies has been developed in this work. This type of label will provide both immuno-staining of the “area of interest" for the restoration of 3D astrocytic ultramorphology, and contrast of astrocytes by the SPM method.
Full Text

About the authors
К. Е. Mochalov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: voleinik@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
О. I. Sutyagina
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Koltzov Institute of Developmental Biology of Russian Academy of Sciences
Email: voleinik@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Vavilova 26, Moscow, 119334
А. V. Altunina
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Moscow Institute of Physics and Technology (National Research University)
Email: voleinik@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Institutskiy per. 9, Dolgoprudny, 141701
D. О. Solovieva
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: voleinik@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
А. Е. Efimov
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs
Email: voleinik@mail.ru
Laboratory of Bionanotechology
Russian Federation, ul. Shchukinskaya 1, Moscow, 123182V. A. Zhuchkov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: voleinik@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
S. P. Chumakov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: voleinik@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
V. A. Oleinikov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)
Author for correspondence.
Email: voleinik@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Kashirskoe shosse 31, Moscow, 115409
References
- Verkhratsky A., Rodríguez J.J., Parpura V. // Cell Tissue Res. 2014. V. 2. P. 493–503. https://doi.org/10.1007/s00441-014-1814-z
- Verkhratsky A., Zorec R., Rodríguez J.J., Parpura V. // Curr. Opin. Pharmacol. 2016. V. 26. P. 74–79. https://doi.org/10.1016/j.coph.2015.09.011
- Popov A., Brazhe A., Denisov P., Sutyagina O., Li L., Lazareva N., Verkhratsky A., Semyanov A. // Aging Cell. 2021. V. 20. P. e13334. https://doi.org/10.1111/acel.13334
- Kelly P., Hudry E., Hou S.S., Bacskai B.J. // Front. Aging Neurosci. 2018. V. 10. P. 1–8. https://doi.org/10.3389/fnagi.2018.0021
- Hefendehl J.K., LeDue J., Ko R.W., Mahler J., Murphy T.H., MacVicar B.A. // Nat. Commun. 2016. V. 7. P. 13441. https://doi.org/10.1038/ncomms13441
- Allen N.J., Barres B.A. // Nature. 2009. V. 7230. P. 675–677. https://doi.org/10.1038/457675a
- Verkhratsky A., Nedergaard M. // Physiol. Rev. 2018. V. 1. P. 239–389. https://doi.org/10.1152/physrev.00042.2016
- Takano T., Tian G.-F., Peng W., Lou N., Libionka W., Han X., Nedergaard M. // Nat. Neurosci. 2006. V. 9. P. 260–267. https://doi.org/10.1038/nn1623
- Garwood C.J., Ratcliffe L.E., Simpson J.E., Heath P.R., Ince P.G., Wharton S.B. // Neuropathol. Appl. Neurobiol. 2017. V. 4. P. 281–298. https://doi.org/10.1111/nan.12338
- Araque A., Parpura V., Sanzgiri R.P., Haydon P.G. // Trends. Neurosci. 1999. V. 5. P. 208–215. https://doi.org/10.1016/s0166-2236(98)01349-6
- Papouin T., Dunphy J., Tolman M., Foley J.C., Haydon P.G. // Philos. Trans. R. Soc. Lond. B. Biol. Sci. V. 1715. P. 20160154. https://doi.org/10.1098/rstb.2016.0154
- Rimmele T.S., Rosenberg P.A. // Neurochem. Int. 2016. V. 98. P. 19–28. https://doi.org/10.1016/j.neuint.2016.04.010
- Verkhratsky A., Zorec R., Rodriguez J.J., Parpura V. // Opera Med. Physiol. 2016. V. 1. P. 13–22.
- Dossi E., Vasile F., Rouach N. // Brain Res. Bull. 2018. V. 136. P. 139–156. https://doi.org/10.1016/j.brainresbull.2017.02.001
- Heller J.P., Rusakov D.A. // Glia. 2015. V. 63. P. 2133–2151. https://doi.org/10.1002/glia.22821
- Hennebelle M., Champeil-Potokar G., Lavialle M., Vancassel S., Denis I. // Nutr. Rev. 2014. V. 72. P. 99–112. https://doi.org/10.1111/nure.12088
- Perez-Alvarez A., Navarrete M., Covelo A., Martin E.D., Araque A. // J. Neurosci. 2014. V. 34. P. 12738–12744. https://doi.org/10.1523/JNEUROSCI.2401-14.2014
- Murphy-Royal C., Dupuis J.P., Varela J.A., Panatier A., Pinson B., Baufreton J., Groc L., Oliet S.H. // Nat. Neurosci. 2015. V. 2. P. 219–226. https://doi.org/10.1038/nn.3901
- Patrushev I., Gavrilov N., Turlapov V., Semyanov A. // Cell Calcium. 2013. V. 54. P. 343–349. https://doi.org/10.1016/j.ceca.2013.08.003
- Caplan J., Niethammer M., Taylor R.M., Czymmek K.J. // Curr. Opin. Struct. Biol. 2011. V. 21. P. 686–693. https://doi.org/10.1016/j.sbi.2011.06.010
- Spiegelhalter C., Tosch V., Hentsch D., Koch M., Kessler P., Schwab Y., Laporte J. // PLoS One. 2010. V. 5. P. e9014. https://doi.org/10.1371/journal.pone.0009014
- Miranda A., Gómez-Varela A.I., Stylianou A., Hirvonen L.M., Sánchez H., De Beule P.A.A. // Nanoscale. 2021. V. 13. P. 2082–2099. https://doi.org/10.1039/d0nr07203f
- Rothbauer U., Zolghadr K., Tillib S., Nowak D., Schermelleh L., Gahl A., Backmann N., Conrath K., Muyldermans S., Cardoso M.C., Leonhardt H. // Nat. Methods. 2006. V. 3. P. 887–889. https://doi.org/10.1038/nmeth953
- Perruchini C., Pecorari F., Bourgeois J.P., Duyckaerts C., Rougeon F., Lafaye P. // Acta Neuropathol. 2009. V. 118. P. 685–695. https://doi.org/10.1007/s00401-009-0572-6
- Muyldermans S. // Annu. Rev. Biochem. 2013. V. 82. P. 775–797. https://doi.org/10.1146/annurev-biochem-063011-092449
- Fang T., Lu X., Berger D., Gmeiner C., Cho J., Schalek R., Ploegh H., Lichtman J. // Nat. Methods. 2018. V. 15. P. 1029–1032. https://doi.org/10.1038/s41592-018-0177-x
- Wu M., Petryayeva E., Medintz I.L., Algar W.R. // Methods Mol. Biol. 2014. V. 1199. P. 215–239. https://doi.org/10.1007/978-1-4939-1280-3_17
- Sukhanova A., Venteo L., Devy J., Artemyev M., Oleinikov V., Pluot M., Nabiev I. // Lab. Inves. 2002. V. 82. P. 1259–1261. https://doi.org/10.1097/01.lab.0000027837.13582.e8
- Milosivic N.T., Ristanovic D. // J. Theor. Biol. 2007. V. 245. P. 130–140.
- Wu C.C., Reilly J.F., Young W.G., Morrison J.H., Bloom F.E. // Cereb. Cortex. 2004. V. 14. P. 543–554. https://doi.org/10.1093/cercor/bhh016
- Ferreira T.A., Blackman A.V., Oyrer J., Jayabal S., Chung A.J., Watt A.J., Sjöström P.J., van Meyel D.J. // Nat. Methods. 2004. V. 11. P. 982–984. https://doi.org/10.1038/nmeth.3125
- Efimov A.E., Agapov I.I., Agapova O.I., Oleinikov V.A., Mezin A.V., Molinari M., Nabiev I., Mochalov K.E. // Rev. Sci. Instrum. 2017. V. 88. P. 023701. https://doi.org/10.1063/1.4975202
- Mochalov K.E., Chistyakov A.A., Solovyeva D.O., Mezin A.V., Oleinikov V.A., Vaskan I.S., Molinari M., Agapov I.I., Nabiev I., Efimov F.E. // Ultramicroscopy. 2017. V. 182. P. 118–123. https://doi.org/10.1016/j.ultramic.2017.06.022
- Efimov A.E., Bobrovsky A.Y., Agapov I.I., Agapova O.I., Oleinikov V.A., Nabiev I.R., Mochalov K.E. // Tech. Phys. Lett. 2016. V. 42. P. 171–174. https://doi.org/10.1134/S1063785016020231
Supplementary files
