Biochemistry of Redox-Active Sulphur Compounds in Mammalian Cells and Approaches to Detecting Them
- Авторлар: Raevsky R.I.1,2, Katrukha V.A.1,3, Khramova Y.V.1,3, Bilan D.S.1,2
-
Мекемелер:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University
- Faculty of Biology, Department of Biochemistry, Lomonosov Moscow State University
- Шығарылым: Том 50, № 4 (2024)
- Беттер: 436-461
- Бөлім: Articles
- URL: https://archivog.com/0132-3423/article/view/670836
- DOI: https://doi.org/10.31857/S0132342324040065
- EDN: https://elibrary.ru/MWZWVY
- ID: 670836
Дәйексөз келтіру
Аннотация
The discovery of new classes of regulatory molecules in human and animal metabolism always leads to a large-scale study of their properties in the context of biochemistry, physiology, and pharmacology. About 20 years ago, hydrogen sulfide (H2S) and its derivatives – active sulfur forms (ASFs): persulfides, polysulfides, nitrosothiols, sulfenic acids, etc. – became one of such classes of molecules. The participation of ASFs in a variety of physiological and pathological processes, such as regulation of vascular tone, inflammation, long-term potentialization in the central nervous system, etc., has been shown. Changes in ASF levels or patterns of modification of their targets are associated with a wide range of pathologies: cardiovascular, oncologic, neurodegenerative, and others. For a part of these processes, mechanisms have been studied that involve direct modification of regulatory (NF-κB, Keap1) or effector (GAFD, eNOS, TRPA1) proteins through reactions of cysteine residues and metal-containing centers with APS. The presence of different regulated enzymatic systems producing APS and numerous molecular targets allows us to consider H2S and its derivatives as an important class of small regulatory molecules. H2S is counted among the so-called “gas transmitters”, along with nitric oxide(II) and carbon monoxide. Over the last 20 years, a huge amount of data on the biochemistry of these compounds and approaches to their study has been accumulated.
Негізгі сөздер
Толық мәтін

Авторлар туралы
R. Raevsky
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University
Email: d.s.bilan@gmail.com
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Ostrovityanova 1, Moscow, 117997
V. Katrukha
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Faculty of Biology, Department of Biochemistry, Lomonosov Moscow State University
Email: yul.khramova@gmail.com
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskye gory 1/12, Moscow, 119234
Y. Khramova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Faculty of Biology, Department of Biochemistry, Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: yul.khramova@gmail.com
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskye gory 1/12, Moscow, 119234
D. Bilan
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University
Email: d.s.bilan@gmail.com
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Ostrovityanova 1, Moscow, 117997
Әдебиет тізімі
- Abe K., Kimura H. // J. Neurosci. 1996. V. 16. P. 1066– 1071. https://doi.org/10.1523/JNEUROSCI.16-03-01066.1996
- Zhao W., Zhang J., Lu Y., Wang R. // EMBO J. 2001. V. 20. P. 6008–6016. https://doi.org/10.1093/emboj/20.21.6008
- Giles G.I., Jacob C. // Biol. Chem. 2002. V. 383. P. 375–388. https://doi.org/10.1515/BC.2002.042
- Szabó C. // Nat. Rev. Drug Discov. 2007. V. 6. P. 917–935. https://doi.org/10.1038/nrd2425
- Li L., Rose P., Moore P.K. // Annu. Rev. Pharmacol. Toxicol. 2011. V. 51. P. 169–187. https://doi.org/10.1146/annurev-pharmtox-010510-100505
- Filipovic M.R., Zivanovic J., Alvarez B., Banerjee R. // Chem. Rev. 2018. V. 118. P. 1253–1337. https://doi.org/10.1021/acs.chemrev.7b00205
- Szabo C. // Biochem. Pharmacol. 2018. V. 149. P. 5–19. https://doi.org/10.1016/j.bcp.2017.09.010
- Cao X., Ding L., Xie Z.Z., Yang Y., Whiteman M., Moore P.K., Bian J.S. // Antioxid. Redox Signal. 2019. V. 31. P. 1–38. https://doi.org/10.1089/ars.2017.7058
- Li Q., Lancaster J.R. // Nitric Oxide. 2013. V. 35. P. 21–34. https://doi.org/10.1016/j.niox.2013.07.001
- Shen Y., Shen Z., Luo S., Guo W., Zhu Y.Z. // Oxid. Med. Cell Longev. 2015. V. 2015. P. 925167. https://doi.org/10.1155/2015/925167
- Zhu Y.Z., Wang Z.J., Ho P., Loke Y.Y., Zhu Y.C., Huang S.H., Tan C.S., Whiteman M., Lu J., Moore P.K. // J. Appl. Physiol. 2007. V. 102. P. 261–268. https://doi.org/10.1152/japplphysiol.00096.2006
- Hosoki R., Matsuki N., Kimura H. // Biochem. Biophys. Res. Commun. 1997. V. 237. P. 527–531. https://doi.org/10.1006/bbrc.1997.6878
- Sivarajah A., Collino M., Yasin M., Benetti E., Gallicchio M., Mazzon E., Cuzzocrea S., Fantozzi R., Thiemermann C. // Shock. 2009. V. 31 P. 267–274. https://doi.org/10.1097/SHK.0b013e318180ff89
- Sen N., Paul B.D., Gadalla M.M., Mustafa A.K., Sen T., Xu R., Kim S., Snyder S.H. // Mol. Cell. 2012. V. 45. P. 13–24. https://doi.org/10.1016/j.molcel.2011.10.021
- Dilek N., Papapetropoulos A., Toliver-Kinsky T., Szabo C. // Pharmacol. Res. 2020. V. 161. P. 105119. https://doi.org/10.1016/j.phrs.2020.105119
- Wang R. // Physiol. Rev. 2012. V. 92. P. 791– 896. https://doi.org/10.1152/physrev.00017.2011
- Ono K., Akaike T., Sawa T., Kumagai Y., Wink D.A., Tantillo D.J., Hobbs A.J., Nagy P., Xian M., Lin J., Fukuto J.M. // Free Radic. Biol. Med. 2014. V. 77. P. 82–94. https://doi.org/10.1016/j.freeradbiomed.2014.09.007
- Singh S., Lin H. // Microorganisms. 2015. V. 3. P. 866–889. https://doi.org/10.3390/microorganisms3040866
- Hellmich M.R., Szabo C. // Handb. Exp. Pharmacol. 2015. V. 230. P. 233–241. https://doi.org/10.1007/978-3-319-18144-8_12
- Hershey J.P., Plese T., Millero F.J. // Geochim. Cosmochim. Acta. 1988. V. 52. P. 2047–2051. https://doi.org/10.1016/0016-7037(88)90183-4
- Fathe K., Holt J.S., Oxley S.P., Pursell C.J. // J. Phys. Chem. A. 2006. V. 110. P. 10793–10798. https://doi.org/10.1021/jp0634104
- Myers R.J. // J. Chem. Educ. 1986. V. 63. P. 687–690. https://doi.org/10.1021/ed063p687
- May P.M., Batka D., Hefter G., Königsberger E., Rowland D. // Chem. Commun. 2018. V. 54. P. 1980– 1983. https://doi.org/10.1039/C8CC00187A
- Cuevasanta E., Lange M., Bonanata J., Coitiño E.L., Ferrer-Sueta G., Filipovic M.R., Alvarez B. // J. Biol. Chem. 2015. V. 290. P. 26866–26880. https://doi.org/10.1074/jbc.M115.672816
- Armstrong D.A., Huie R.E., Koppenol W.H., Lymar S.V., Merenyi G., Neta P., Ruscic B., Stanbury D.M., Steenken S., Wardman P. // Pure Appl. Chem. 2015. V. 87. P. 1139–1150. https://doi.org/10.1515/pac-2014-0502
- Koppenol W.H., Bounds P.L. // Arch. Biochem. Biophys. 2017. V. 617. P. 3–8. https://doi.org/10.1016/j.abb.2016.09.012
- Wedmann R., Zahl A., Shubina T.E., Dürr M., Heinemann F.W., Bugenhagen B.E.C., Burger P., Ivanovic-Burmazovic I., Filipovic M.R. // Inorg. Chem. 2015. V. 54. P. 9367–9380. https://doi.org/10.1021/acs.inorgchem.5b00831
- Kolluru G.K., Shen X., Kevil C.G. // Redox Biol. 2013. V.1. P. 313–318. https://doi.org/10.1016/j.redox.2013.05.001
- Miranda K.M., Paolocci N., Katori T., Thomas D.D., Ford E., Bartberger M.D., Espey M.G., Kass D.A., Feelisch M., Fukuto J.M., Wink D.A. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 9196–9201. https://doi.org/10.1073/pnas.1430507100
- Mathai J.C., Missner A., Kügler P., Saparov S.M., Zeidel M.L., Lee J.K., Pohl P. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 16633–16638. https://doi.org/10.1073/pnas.0902952106
- Gadalla M.M., Snyder S.H. // J. Neurochem. 2010. V. 113. P. 14–26. https://doi.org/10.1111/j.1471-4159.2010.06580.x
- Kabil O., Banerjee R. // Antioxid. Redox Signal. 2014. V. 20. P. 770–782. https://doi.org/10.1089/ars.2013.5339
- Paul B.D., Snyder S.H. // Trends Biochem. Sci. 2015. V. 40. P. 687–700. https://doi.org/10.1016/j.tibs.2015.08.007
- Banerjee R., Zou C.G. // Arch. Biochem. Biophys. 2005. V. 433. P. 144–156. https://doi.org/10.1016/j.abb.2004.08.037
- Singh S., Madzelan P., Banerjee R. // Nat. Prod. Rep. 2007. V. 24. P. 631–639. https://doi.org/10.1039/b604182p
- Vicente J.B., Colaço H.G., Sarti P., Leandro P., Giuffrè A. // J. Biol. Chem. 2016. V. 291. P. 572–581. https://doi.org/10.1074/jbc.M115.681221
- Vitvitsky V., Thomas M., Ghorpade A., Gendelman H.E., Banerjee R. // J. Biol. Chem. 2006. V. 281. P. 35785–35793. https://doi.org/10.1074/jbc.M602799200
- Kimura H. // Exp. Physiol. 2011. V. 96. P. 833–835. https://doi.org/10.1113/expphysiol.2011.057455
- Chiku T., Padovani D., Zhu W., Singh S., Vitvitsky V., Banerjee R. // J. Biol. Chem. 2009. V. 284. P. 11601– 11612. https://doi.org/10.1074/jbc.M808026200
- Yang G., Wu L., Jiang B., Yang W., Qi J., Cao K., Meng Q., Mustafa A.K., Mu W., Zhang S., Snyder S.H., Wang R. // Science. 2008. V. 322. P. 587–590. https://doi.org/10.1126/science.1162667
- Huang J., Niknahad H., Khan S., O’Brien P.J. // Biochem. Pharmacol. 1998. V. 55. P. 1983–1990. https://doi.org/10.1016/s0006-2952(98)00072-0
- Westrop G.D., Georg I., Coombs G.H. // J. Biol. Chem. 2009. V. 284. P. 33485–33494. https://doi.org/10.1074/jbc.M109.054320
- Kolluru G.K., Shen X., Bir S.C., Kevil C.G. // Nitric Oxide. 2013. V. 35. P. 5–20. https://doi.org/10.1016/j.niox.2013.07.002
- Domán A., Dóka É., Garai D., Bogdándi V., Balla G., Balla J., Nagy P. // Redox Biol. 2023. V. 60. P. 102617. https://doi.org/10.1016/j.redox.2023.102617
- Pietri R., Román-Morales E., López-Garriga J. // Antioxid. Redox Signal. 2011. V. 15. P. 393–404. https://doi.org/10.1089/ars.2010.3698
- Nicholls P., Kim J.K. // Biochim. Biophys. Acta. 1981. V. 637. P. 312–320. https://doi.org/10.1016/0005-2728(81)90170-5
- Collman J.P., Ghosh S., Dey A., Decréau R.A. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 22090– 22095. https://doi.org/10.1073/pnas.0904082106
- Nicholls P. // Biochem. Soc. Trans. 1975. V. 3. P. 316– 319. https://doi.org/10.1042/bst0030316
- Vitvitsky V., Yadav P.K., An S., Seravalli J., Cho U.S., Banerjee R. // J. Biol. Chem. 2017. V. 292. P. 5584– 5592. https://doi.org/10.1074/jbc.M117.774943
- Goubern M., Andriamihaja M., Nübel T., Blachier F., Bouillaud F. // FASEB J. 2007. V. 21. P. 1699–1706. https://doi.org/10.1096/fj.06-7407com
- Kabil O., Banerjee R. // J. Biol. Chem. 2010. V. 285. P. 21903–21907. https://doi.org/10.1074/jbc.R110.128363
- Pedre B., Talwar D., Barayeu U., Schilling D., Luzarowski M., Sokolowski M., Glatt S., Dick T.P. // Nat. Chem. Biol. 2023. V. 19. P. 507–517. https://doi.org/10.1038/s41589-022-01244-8
- Bianco C.L., Akaike T., Ida T., Nagy P., Bogdandi V., Toscano P., Kumagai Y., Henderson C.F., Goddu R.N., Lin J., Fukuto J.M. // Br. J. Pharmacol. 2019. V. 176. P. 671–683. https://doi.org/10.1111/bph.14372
- Toohey J.I., Cooper A.J.L. // Molecules. 2014. V. 19. P. 12789–12813. https://doi.org/10.3390/molecules190812789
- Jüdes A., Bruch A., Klassen R., Helm M., Schaffrath R. // Microb. Cell. 2016. V. 3. P. 554–564. https://doi.org/10.15698/mic2016.11.539
- Kimura Y., Koike S., Shibuya N., Lefer D., Ogasawara Y., Kimura H. // Sci. Rep. 2017. V. 7. P. 10459. https://doi.org/10.1038/s41598-017-11004-7
- Zhang D., MacInkovic I., Devarie-Baez N.O., Pan J., Park C.M., Carroll K.S., Filipovic M.R., Xian M. // Angew. Chem. Int. Ed. Engl. 2014. V. 53. P. 575–581. https://doi.org/10.1002/anie.201305876
- Cortese-Krott M.M., Fernandez B.O., Santos J.L.T., Mergia E., Grman M., Nagy P., Kelm M., Butler A., Feelisch M. // Redox Biol. 2014. V. 2. P. 234– 244. https://doi.org/10.1016/j.redox.2013.12.031
- Akaike T., Ida T., Wei F.Y., Nishida M., Kumagai Y., Alam M.M., Ihara H., Sawa T., Matsunaga T., Kasamatsu S., Nishimura A., Morita M., Tomizawa K., Nishimura A., Watanabe S., Inaba K., Shima H., Tanuma N., Jung M., Fujii S., Watanabe Y., Ohmuraya M., Nagy P., Feelisch M., Fukuto J.M., Motohashi H. // Nat. Commun. 2017. V. 8. P. 1177. https://doi.org/10.1038/s41467-017-01311-y
- Mishanina T.V., Libiad M., Banerjee R. // Nat. Chem. Biol. 2015. V. 11. P. 457–464. https://doi.org/10.1038/nchembio.1834
- Toohey J.I. // Anal. Biochem. 2011. V. 413. P. 1–7. https://doi.org/10.1016/j.ab.2011.01.044
- Fukuto J.M., Ignarro L.J., Nagy P., Wink D.A., Kevil C.G., Feelisch M., Cortese-Krott M.M., Bianco C.L., Kumagai Y., Hobbs A.J., Lin J., Ida T., Akaike T. // FEBS Lett. 2018. V. 592. P. 2140–2152. https://doi.org/10.1002/1873-3468.13090
- Kimura H. // Molecules. 2014. V. 19. P. 16146–16157. https://doi.org/10.3390/molecules191016146
- Ida T., Sawa T., Ihara H., Tsuchiya Y., Watanabe Y., Kumagai Y., Suematsu M., Motohashi H., Fujii S., Matsunaga T., Yamamoto M., Ono K., DevarieBaez N.O., Xian M., Fukuto J.M., Akaike T. // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 7606–7611. https://doi.org/10.1073/pnas.1321232111
- Wedmann R., Onderka C., Wei S., Szijártó I.A., Miljkovic J.L., Mitrovic A., Lange M., Savitsky S., Yadav P.K., Torregrossa R., Harrer E.G., Harrer T., Ishii I., Gollasch M., Wood M.E., Galardon E., Xian M., Whiteman M., Banerjee R., Filipovic M.R. // Chem. Sci. 2016. V. 7. P. 3414–3426. https://doi.org/10.1039/C5SC04818D
- Dóka É., Pader I., Bíró A., Johansson K., Cheng Q., Ballagó K., Prigge J.R., Pastor-Flores D., Dick T.P., Schmidt E.E., Arnér E.S.J., Nagy P. // Sci. Adv. 2016. V. 2. P. 1500968. https://doi.org/10.1126/sciadv.1500968
- O’Neill L.A.J., Kaltschmidt C. // Trends Neurosci. 1997. V. 20. P. 252–258. https://doi.org/10.1016/S0166-2236(96)01035-1
- Lee Z.W., Teo X.Y., Tay E.Y.W., Tan C.H., Hagen T., Moore P.K., Deng L.W. // Br. J. Pharmacol. 2014. V. 171. P. 4322–4336. https://doi.org/10.1111/bph.12773
- Zhao K., Ju Y., Li S., Altaany Z., Wang R., Yang G. // EMBO Rep. 2014. V. 15. P. 792–800. https://doi.org/10.1002/embr.201338213
- Jiang B., Tang G., Cao K., Wu L., Wang R. // Antioxid. Redox Signal. 2010. V. 12. P. 1167–1178. https://doi.org/10.1089/ars.2009.2894
- Shaidullov I.F., Shafigullin M.U., Gabitova L.M., Sitdikov F.G., Zefirov A.L., Sitdikova G.F. // J. Evol. Biochem. Phys. 2018. V. 54. P. 400–407. https://doi.org/10.1134/S0022093018050083
- Papapetropoulos A., Pyriochou A., Altaany Z., Yang G., Marazioti A., Zhou Z., Jeschke M.G., Branski L.K., Herndon D.N., Wang R., Szabó C. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 21972–21977. https://doi.org/10.1073/pnas.0908047106
- Eberhardt M., Dux M., Namer B., Miljkovic J., Cordasic N., Will C., Kichko T.I., de la Roche J., Fischer M., Suárez S.A., Bikiel D., Dorsch K., Leffler A., Babes A., Lampert A., Lennerz J.K., Jacobi J., Martí M.A., Doctorovich F., Högestätt E.D., Zygmunt P.M., Ivanovic-Burmazovic I., Messlinger K., Reeh P., Filipovic M.R. // Nat. Commun. 2014. V. 5. P. 4381. https://doi.org/10.1038/ncomms5381
- Altaany Z., Ju Y., Yang G., Wang R. // Sci. Signal. 2014. V. 7. P. ra87. https://doi.org/10.1126/scisignal.2005478
- Bucci M., Papapetropoulos A., Vellecco V., Zhou Z., Zaid A., Giannogonas P., Cantalupo A., Dhayade S., Karalis K.P., Wang R., Feil R., Cirino G. // PLoS One. 2012. V. 7. P. e53319. https://doi.org/10.1371/journal.pone.0053319
- Paulsen C.E., Truong T.H., Garcia F.J., Homann A., Gupta V., Leonard S.E., Carroll K.S. // Nat. Chem. Biol. 2011. V. 8. P. 57–64. https://doi.org/10.1038/nchembio.736
- Zivanovic J., Kouroussis E., Kohl J.B., Adhikari B., Bursac B., Schott-Roux S., Petrovic D., Miljkovic J.L., Thomas-Lopez D., Jung Y., Miler M., Mitchell S., Milosevic V., Gomes J.E., Benhar M., Gonzales-Zorn B., Ivanovic-Burmazovic I., Torregrossa R., Mitchell J.R., Whiteman M., Schwarz G., Snyder S.H., Paul B.D., Carroll K.S., Filipovic M.R. // Cell Metab. 2019. V. 30. P. 1152–1170.e13. https://doi.org/10.1016/j.cmet.2019.10.007
- Tao B.-B., Liu S.-Y., Zhang C.-C., Fu W., Cai W.-J., Wang Y., Shen Q., Wang M.-J., Chen Y., Zhang L.-J., Zhu Y.-Z., Zhu Y.-C. // Antioxid. Redox Signal. 2013. V. 19. P. 448–464. https://doi.org/10.1089/ars.2012.4565
- Wu D., Hu Q., Zhu D. // Oxid. Med. Cell Longev. 2018. P. 4579140. https://doi.org/10.1155/2018/4579140
- Kolluru G.K., Shackelford R.E., Shen X., Dominic P., Kevil C.G. // Nat. Rev. Cardiol. 2023. V. 20. P. 109– 125. https://doi.org/10.1038/s41569-022-00741-6
- Robert K., Vialard F., Thiery E., Toyama K., Sinet P.-M., Janel N., London J. // J. Histochem. Cytochem. 2003. V. 51. P. 363–371. https://doi.org/10.1177/002215540305100311
- Luo H., Wu P.-F., Han Q.-Q., Cao Y., Deng S.-L., Wang J., Deng Q., Wang F., Chen J.-G. // Antioxid. Redox Signal. 2019. V. 30. P. 1880–1899. https://doi.org/10.1089/ars.2018.7503
- García-Bereguiaín M.A., Samhan-Arias A.K., MartínRomero F.J., Gutiérrez-Merino C. // Antioxid. Redox Signal. 2008. V. 10. P. 31–42. https://doi.org/10.1089/ars.2007.1656
- Han Y., Qin J., Chang X., Yang Z., Tang X., Du J. // Biochem. Biophys. Res. Commun. 2005. V. 327. P. 431–436. https://doi.org/10.1016/j.bbrc.2004.12.028
- Rangel-Galván M., Rangel-Galván V., Rangel-Huerta A. // Front. Pharmacol. 2023. V. 14. P. 1212800. https://doi.org/10.3389/fphar.2023.1212800
- Tsubota-Matsunami M., Noguchi Y., Okawa Y., Sekiguchi F., Kawabata A. // J. Pharmacol. Sci. 2012. V. 119. P. 293–296. https://doi.org/10.1254/jphs.12086sc
- Lu M., Choo C.H., Hu L.-F., Tan B.H., Hu G., Bian J.-S. // Neurosci. Res. 2010. V. 66. P. 92–98. https://doi.org/10.1016/j.neures.2009.09.1713
- Whiteman M., Cheung N.S., Zhu Y.-Z., Chu S.H., Siau J.L., Wong B.S., Armstrong J.S., Moore P.K. // Biochem. Biophys. Res. Commun. 2005. V. 326. P. 794–798. https://doi.org/10.1016/j.bbrc.2004.11.110
- Tyagi N., Moshal K.S., Sen U., Vacek T.P., Kumar M., Hughes W.M., Kundu S., Tyagi S.C. // Antioxid. Redox Signal. 2009. V. 11. P. 25–33. https://doi.org/10.1089/ars.2008.2073
- Giuliani D., Ottani A., Zaffe D., Galantucci M., Strinati F., Lodi R., Guarini S. // Neurobiol. Learn Mem. 2013. V. 104. P. 82–91. https://doi.org/10.1016/j.nlm.2013.05.006
- Zhang H., Gao Y., Zhao F., Dai Z., Meng T., Tu S., Yan Y. // Neurochem. Int. 2011. V. 58. P. 169–175. https://doi.org/10.1016/j.neuint.2010.11.010
- Liu Y.-Y., Bian J.-S. // J. Alzheimers Dis. 2010. V. 22. P. 1189–1200. https://doi.org/10.3233/JAD-2010-101002
- Nagpure B.V., Bian J.-S. // PLoS One. 2014. V. 9. P. e88508. https://doi.org/10.1371/journal.pone.0088508
- Sbodio J.I., Snyder S.H., Paul B.D. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 8843–8848. https://doi.org/10.1073/pnas.1608264113
- Vandiver M.S., Paul B.D., Xu R., Karuppagounder S., Rao F., Snowman A.M., Seok Ko H., Il Lee Y., Dawson V.L., Dawson T.M., Sen N., Snyder S.H. // Nat. Commun. 2013. V. 4. P. 1626. https://doi.org/10.1038/ncomms2623
- Sun H.-J., Wu Z.-Y., Nie X.-W., Bian J.-S. // Curr. Neuropharmacol. 2021. V. 19. P. 868–884. https://doi.org/10.2174/1570159X18666200905143550
- Yang W., Yang G., Jia X., Wu L., Wang R. // J. Physiol. 2005. V. 569. P. 519–531. https://doi.org/10.1113/jphysiol.2005.097642
- Yang G., Yang W., Wu L., Wang R. // J. Biol. Chem. 2007. V. 282. P. 16567–16576. https://doi.org/10.1074/jbc.M700605200
- Pahwa R., Goyal A., Jialal I. // Chronic Inflammation / In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2023.
- Soomro S. // Open J. Immunol. 2019. V. 9. P. 1–20. https://doi.org/10.4236/oji.2019.91001
- Trummer M., Galardon E., Mayer B., Steiner G., Stamm T., Kloesch B. // Nitric Oxide. 2022. V. 129. P. 41–52. https://doi.org/10.1016/j.niox.2022.09.005
- Zhang T., Tsutsuki H., Ono K., Akaike T., Sawa T. // J. Clin. Biochem. Nutr. 2021. V. 1. P. 5–8. https://doi.org/ 10.3164/jcbn.20-13
- Arsenijevic D., Stojanovic B., Milovanovic J., Arsenijevic A., Simic M., Pergal M., Kodranov I., Cvetkovic O., Vojvodic D., Ristanovic E., Manojlovic D., Milovanovic M., Arsenijevic N. // Nutrients. 2021. V. 13. P. 1022. https://doi.org/10.3390/nu13031022
- Tamizhselvi R., Moore P.K., Bhatia M. // Pancreas. 2008. V. 4. P. e24–e31. https://doi.org/10.1097/MPA.0b013e31816857bb
- Bhatia M., Gaddam R.R. // Antioxid. Redox Signal. 2021. V. 34. P. 1368–1377. https://doi.org/10.1089/ars.2020.8211
- Norris E.J., Culberson C.R., Narasimhan S., Clemens M.G. // Shock. 2011. V. 3. P. 242–250. https://doi.org/10.1097/SHK.0b013e3182252ee7
- Mani S., Cao W., Wu L., Wang R. // Nitric Oxide. 2014. V. 41. P. 62–71. https://doi.org/10.1016/j.niox.2014.02.006
- Sun H.-J., Wu Z.-Y., Nie X.-W., Wang X.-Y., Bian J.-S. // J. Adv. Res. 2021. V. 27. P. 127–135. https://doi.org/10.1016/j.jare.2020.05.010
- Tan G., Pan S., Li J., Dong X., Kang K., Zhao M., Jiang X., Kanwar J.R., Qiao H., Jiang H., Sun X. // PLoS One. 2011. V. 6. P. e25943. https://doi.org/10.1371/journal.pone.0025943
- Xia M., Chen L., Muh R.W., Li P.L., Li N. // J. Pharmacol. Exp. Ther. 2009. V. 329. P. 1056–62. https://doi.org/10.1124/jpet.108.149963
- Nagahara N., Ito T., Kitamura H., Nishino T. // Histochemistry. 1998. V. 110. P. 243–250. https://doi.org/10.1007/s004180050286
- Bos E.M., Wang R., Snijder P.M., Boersema M., Damman J., Fu M., Moser J., Hillebrands J.L., Ploeg R.J., Yang G., Leuvenink H.G., van Goor H. // J. Am. Soc. Nephrol. 2013. V. 5. P. 759–770. https://doi.org/10.1681/ASN.2012030268
- Feng J., Lu X., Li H., Wang S. // Ren. Fail. 2022. V. 44. P. 1290–1309. https://doi.org/10.1080/0886022X.2022.2107936
- Shiota M., Naya M., Yamamoto T., Hishiki T., Tani T., Takahashi H., Kubo A., Koike D., Itoh M., Ohmura M., Kabe Y., Sugiura Y., Hiraoka N., Morikawa T., Takubo K., Suina K., Nagashima H., Sampetrean O., Nagano O., Saya H., Yamazoe S., Watanabe H., Suematsu M. // Nat. Commun. 2018. V. 9. P. 1561. https://doi.org/10.1038/s41467-018-03899-1
- Honda K., Hishiki T., Yamamoto S., Yamamoto T., Miura N., Kubo A., Itoh M., Chen W.-Y., Takano M., Yoshikawa T., Kasamatsu T., Sonoda S., Yoshizawa H., Nakamura S., Itai Y., Shiota M., Koike D., Naya M., Hayakawa N., Naito Y., Matsuura T., Iwaisako K., Masui T., Uemoto S., Nagashima K., Hashimoto Y., Sakuma T., Matsubara O., Huang W., Ida T., Akaike T., Masugi Y., Sakamoto M., Kato T., Ino Y., Yoshida H., Tsuda H., Hiraoka N., Kabe Y., Suematsu M. // Redox Biol. 2021. V. 41. P. 101926. https://doi.org/10.1016/j.redox.2021.101926
- Yu F., Han X., Chen L. // Chem. Commun. 2014. V. 50. P. 12234–12249. https://doi.org/10.1039/C4CC03312D
- Lin V.S., Lippert A.R., Chang C.J. // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 7131–7135. https://doi.org/10.1073/pnas.1302193110
- Lippert A.R., New E.J., Chang C.J. // J. Am. Chem. Soc. 2011. V. 133. P. 10078–10080. https://doi.org/10.1021/ja203661j
- Wu M.-Y., Li K., Hou J.-T., Huang Z., Yu X.-Q. // Org. Biomol. Chem. 2012. V. 10. P. 8342–8347. https://doi.org/10.1039/C2OB26235E
- Liu C., Pan J., Li S., Zhao Y., Wu L.Y., Berkman C.E., Whorton A.R., Xian M. // Angew. Chem. Int. Ed. Engl. 2011. V. 50. P. 10327–10329. https://doi.org/10.1002/anie.201104305
- Liu J., Sun Y.-Q., Zhang J., Yang T., Cao J., Zhang L., Guo W. // Chemistry. 2013. V. 19. P. 4717–4722. https://doi.org/10.1002/chem.201300455
- Chen Y., Zhu C., Yang Z., Chen J., He Y., Jiao Y., He W., Qiu L., Cen J., Guo Z. // Angew. Chem. Int. Ed. Engl. 2013. V. 52. P. 1688–1691. https://doi.org/10.1002/anie.201207701
- Pak Y.L., Li J., Ko K.C., Kim G., Lee J.Y., Yoon J. // Anal. Chem. 2016. V. 88. P. 5476–5481. https://doi.org/10.1021/acs.analchem.6b00956
- Smith R.M., Martell A.E. // Critical Stability Constants. New York: Springer, 1976. https://doi.org/10.1007/978-1-4757-5506-0
- Sasakura K., Hanaoka K., Shibuya N., Mikami Y., Kimura Y., Komatsu T., Ueno T., Terai T., Kimura H., Nagano T. // J. Am. Chem. Soc. 2011. V. 133. P. 18003–18005. https://doi.org/10.1021/ja207851s
- Kaushik R., Ghosh A., Amilan Jose D. // Coord. Chem. Rev. 2017. V. 347. P. 141–157. https://doi.org/10.1016/j.ccr.2017.07.003
- Gao M., Wang R., Yu F., Li B., Chen L. // J. Mater. Chem. B. 2018. V. 6. P. 6637–6645. https://doi.org/10.1039/c8tb01794h
- Gao M., Wang R., Yu F., You J., Chen L. // J. Mater. Chem. B. 2018. V. 6. P. 2608–2619. https://doi.org/10.1039/c7tb03200e
- Echizen H., Sasaki E., Hanaoka K. // Biomolecules. 2021. V. 11. P. 1553. https://doi.org/10.3390/biom11111553
- Chen S., Chen Z., Ren W., Ai H. // J. Am. Chem. Soc. 2012. V. 134. P. 9589–9592. https://doi.org/10.1021/ja303261d
- Hu X., Li H., Zhang X., Chen Z., Zhao R., Hou N., Liu J., Xun L., Liu H. // Anal. Chem. 2019. V. 91. P. 3893–3901. https://doi.org/10.1021/acs.analchem.8b04634
- Li Z., Wang Q., Xia Y., Xun L., Liu H. // Antioxidants. 2020. V. 9. P. 985. https://doi.org/10.3390/antiox9100985
- Müller A., Schneider J.F., Degrossoli A., Lupilova N., Dick T.P., Leichert L.I. // Free Radic. Biol. Med. 2017. V. 106. P. 329–338. https://doi.org/10.1016/j.freeradbiomed.2017.02.044
- Paulsen C.E., Carroll K.S. // Chem. Rev. 2013. V. 113. P. 4633–4679. https://doi.org/10.1021/cr300163e
- Nagy P., Pálinkás Z., Nagy A., Budai B., Tóth I., Vasas A. // Biochim. Biophys. Acta. 2014. V. 1840. P. 876–891. https://doi.org/10.1016/j.bbagen.2013.05.037
- Xu T., Scafa N., Xu L.-P., Zhou S., Al-Ghanem K.A., Mahboob S., Fugetsu B., Zhang X. // Analyst. 2016. V. 141. P. 1185–1195. https://doi.org/10.1039/C5AN02208H
- Ibrahim H., Serag A., Farag M.A. // J. Adv. Res. 2021. V. 27. P. 137–153. https://doi.org/10.1016/j.jare.2020.05.018
- Quan F.-S., Lee G.-J. // Biomed. Res. Int. 2021. V. 2021. P. 5473965. https://doi.org/10.1155/2021/5473965
- Haddad P.R., Heckenberg A.L. // J. Chromatogr. 1988. V. 447. P. 415–420. https://doi.org/10.1016/0021-9673(88)90054-4
- Vitvitsky V., Banerjee R. // Methods Enzymol. 2015. V. 554. P. 111–123. https://doi.org/10.1016/bs.mie.2014.11.013
- Wintner E.A., Deckwerth T.L., Langston W., Bengtsson A., Leviten D., Hill P., Insko M.A., Dumpit R., VandenEkart E., Toombs C.F., Szabo C. // Br. J. Pharmacol. 2010. V. 160. P. 941–957. https://doi.org/10.1111/j.1476-5381.2010.00704.x
- Wedding R.T. // Methods Enzymol. 1987. V. 143. P. 29–31. https://doi.org/10.1016/0076-6879(87)43010-3
- Doeller J.E., Isbell T.S., Benavides G., Koenitzer J., Patel H., Patel R.P., Lancaster J.R., Darley-Usmar V.M., Kraus D.W. // Anal. Biochem. 2005. V. 341. P. 40–51. https://doi.org/10.1016/j.ab.2005.03.024
- Whitfield N.L., Kreimier E.L., Verdial F.C., Skovgaard N., Olson K.R. // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008. V. 294. P. R1930–R1937. https://doi.org/10.1152/ajpregu.00025.2008
- Furne J., Saeed A., Levitt M.D. // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008. V. 295. P. R1479– R1485. https://doi.org/10.1152/ajpregu.90566.2008
- Wood J.L. // Methods Enzymol. 1987. V. 143. P. 25–29. https://doi.org/10.1016/0076-6879(87)43009-7
- Numakura T., Sugiura H., Akaike T., Ida T., Fujii S., Koarai A., Yamada M., Onodera K., Hashimoto Y., Tanaka R., Sato K., Shishikura Y., Hirano T., Yanagisawa S., Fujino N., Okazaki T., Tamada T., Hoshikawa Y., Okada Y., Ichinose M. // Thorax. 2017. V. 72. P. 1074–1083. https://doi.org/10.1136/thoraxjnl-2016-209359
- Liu C., Zhang F., Munske G., Zhang H., Xian M. // Free Radic. Biol. Med. 2014. V. 76. P. 200–207. https://doi.org/10.1016/j.freeradbiomed.2014.08.003
- Hannestad U., Margheri S., Sörbo B. // Anal. Biochem. 1989. V. 178. P. 394–398. https://doi.org/10.1016/0003-2697(89)90659-3
- Mustafa A.K., Gadalla M.M., Sen N., Kim S., Mu W., Gazi S.K., Barrow R.K., Yang G., Wang R., Snyder S.H. // Sci. Signal. 2009. V. 2. P. ra72. https://doi.org/10.1126/scisignal.2000464
- Pan J., Carroll K.S. // ACS Chem. Biol. 2013. V. 8. P. 1110–1116. https://doi.org/10.1021/cb4001052
- Smyth D., Blumenfeld O., Konigsberg W. // Biochem. J. 1964. V. 91. P. 589–595. https://doi.org/10.1042/bj0910589
- Gao X.-H., Krokowski D., Guan B.-J., Bederman I., Majumder M., Parisien M., Diatchenko L., Kabil O., Willard B., Banerjee R., Wang B., Bebek G., Evans C.R., Fox P.L., Gerson S.L., Hoppel C.L., Liu M., Arvan P., Hatzoglou M. // eLife. 2015. V. 4. P. e10067. https://doi.org/10.7554/eLife.10067
- Longen S., Richter F., Köhler Y., Wittig I., Beck K.-F., Pfeilschifter J. // Sci. Rep. 2016. V. 6. P. 29808. https://doi.org/10.1038/srep29808
- Iciek M., Bilska-Wilkosz A., Kozdrowicki M., Górny M. // Biosci. Rep. 2022. V. 42. P. BSR20221006. https://doi.org/10.1042/BSR20221006
- Li M., Mao J., Zhu Y. // Antioxid. Redox Signal. 2021. V. 35. P. 341–356. https://doi.org/10.1089/ars.2020.8249
- Magli E., Perissutti E., Santagada V., Caliendo G., Corvino A., Esposito G., Esposito G., Fiorino F., Migliaccio M., Scognamiglio A., Severino B., Sparaco R., Frecentese F. // Biomolecules. 2021. V. 11. P. 1899. https://doi.org/10.3390/biom11121899
Қосымша файлдар
