Biochemistry of Redox-Active Sulphur Compounds in Mammalian Cells and Approaches to Detecting Them

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The discovery of new classes of regulatory molecules in human and animal metabolism always leads to a large-scale study of their properties in the context of biochemistry, physiology, and pharmacology. About 20 years ago, hydrogen sulfide (H2S) and its derivatives – active sulfur forms (ASFs): persulfides, polysulfides, nitrosothiols, sulfenic acids, etc. – became one of such classes of molecules. The participation of ASFs in a variety of physiological and pathological processes, such as regulation of vascular tone, inflammation, long-term potentialization in the central nervous system, etc., has been shown. Changes in ASF levels or patterns of modification of their targets are associated with a wide range of pathologies: cardiovascular, oncologic, neurodegenerative, and others. For a part of these processes, mechanisms have been studied that involve direct modification of regulatory (NF-κB, Keap1) or effector (GAFD, eNOS, TRPA1) proteins through reactions of cysteine residues and metal-containing centers with APS. The presence of different regulated enzymatic systems producing APS and numerous molecular targets allows us to consider H2S and its derivatives as an important class of small regulatory molecules. H2S is counted among the so-called “gas transmitters”, along with nitric oxide(II) and carbon monoxide. Over the last 20 years, a huge amount of data on the biochemistry of these compounds and approaches to their study has been accumulated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

R. Raevsky

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University

Email: d.s.bilan@gmail.com
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Ostrovityanova 1, Moscow, 117997

V. Katrukha

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Faculty of Biology, Department of Biochemistry, Lomonosov Moscow State University

Email: yul.khramova@gmail.com
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskye gory 1/12, Moscow, 119234

Y. Khramova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Faculty of Biology, Department of Biochemistry, Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: yul.khramova@gmail.com
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskye gory 1/12, Moscow, 119234

D. Bilan

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University

Email: d.s.bilan@gmail.com
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Ostrovityanova 1, Moscow, 117997

Әдебиет тізімі

  1. Abe K., Kimura H. // J. Neurosci. 1996. V. 16. P. 1066– 1071. https://doi.org/10.1523/JNEUROSCI.16-03-01066.1996
  2. Zhao W., Zhang J., Lu Y., Wang R. // EMBO J. 2001. V. 20. P. 6008–6016. https://doi.org/10.1093/emboj/20.21.6008
  3. Giles G.I., Jacob C. // Biol. Chem. 2002. V. 383. P. 375–388. https://doi.org/10.1515/BC.2002.042
  4. Szabó C. // Nat. Rev. Drug Discov. 2007. V. 6. P. 917–935. https://doi.org/10.1038/nrd2425
  5. Li L., Rose P., Moore P.K. // Annu. Rev. Pharmacol. Toxicol. 2011. V. 51. P. 169–187. https://doi.org/10.1146/annurev-pharmtox-010510-100505
  6. Filipovic M.R., Zivanovic J., Alvarez B., Banerjee R. // Chem. Rev. 2018. V. 118. P. 1253–1337. https://doi.org/10.1021/acs.chemrev.7b00205
  7. Szabo C. // Biochem. Pharmacol. 2018. V. 149. P. 5–19. https://doi.org/10.1016/j.bcp.2017.09.010
  8. Cao X., Ding L., Xie Z.Z., Yang Y., Whiteman M., Moore P.K., Bian J.S. // Antioxid. Redox Signal. 2019. V. 31. P. 1–38. https://doi.org/10.1089/ars.2017.7058
  9. Li Q., Lancaster J.R. // Nitric Oxide. 2013. V. 35. P. 21–34. https://doi.org/10.1016/j.niox.2013.07.001
  10. Shen Y., Shen Z., Luo S., Guo W., Zhu Y.Z. // Oxid. Med. Cell Longev. 2015. V. 2015. P. 925167. https://doi.org/10.1155/2015/925167
  11. Zhu Y.Z., Wang Z.J., Ho P., Loke Y.Y., Zhu Y.C., Huang S.H., Tan C.S., Whiteman M., Lu J., Moore P.K. // J. Appl. Physiol. 2007. V. 102. P. 261–268. https://doi.org/10.1152/japplphysiol.00096.2006
  12. Hosoki R., Matsuki N., Kimura H. // Biochem. Biophys. Res. Commun. 1997. V. 237. P. 527–531. https://doi.org/10.1006/bbrc.1997.6878
  13. Sivarajah A., Collino M., Yasin M., Benetti E., Gallicchio M., Mazzon E., Cuzzocrea S., Fantozzi R., Thiemermann C. // Shock. 2009. V. 31 P. 267–274. https://doi.org/10.1097/SHK.0b013e318180ff89
  14. Sen N., Paul B.D., Gadalla M.M., Mustafa A.K., Sen T., Xu R., Kim S., Snyder S.H. // Mol. Cell. 2012. V. 45. P. 13–24. https://doi.org/10.1016/j.molcel.2011.10.021
  15. Dilek N., Papapetropoulos A., Toliver-Kinsky T., Szabo C. // Pharmacol. Res. 2020. V. 161. P. 105119. https://doi.org/10.1016/j.phrs.2020.105119
  16. Wang R. // Physiol. Rev. 2012. V. 92. P. 791– 896. https://doi.org/10.1152/physrev.00017.2011
  17. Ono K., Akaike T., Sawa T., Kumagai Y., Wink D.A., Tantillo D.J., Hobbs A.J., Nagy P., Xian M., Lin J., Fukuto J.M. // Free Radic. Biol. Med. 2014. V. 77. P. 82–94. https://doi.org/10.1016/j.freeradbiomed.2014.09.007
  18. Singh S., Lin H. // Microorganisms. 2015. V. 3. P. 866–889. https://doi.org/10.3390/microorganisms3040866
  19. Hellmich M.R., Szabo C. // Handb. Exp. Pharmacol. 2015. V. 230. P. 233–241. https://doi.org/10.1007/978-3-319-18144-8_12
  20. Hershey J.P., Plese T., Millero F.J. // Geochim. Cosmochim. Acta. 1988. V. 52. P. 2047–2051. https://doi.org/10.1016/0016-7037(88)90183-4
  21. Fathe K., Holt J.S., Oxley S.P., Pursell C.J. // J. Phys. Chem. A. 2006. V. 110. P. 10793–10798. https://doi.org/10.1021/jp0634104
  22. Myers R.J. // J. Chem. Educ. 1986. V. 63. P. 687–690. https://doi.org/10.1021/ed063p687
  23. May P.M., Batka D., Hefter G., Königsberger E., Rowland D. // Chem. Commun. 2018. V. 54. P. 1980– 1983. https://doi.org/10.1039/C8CC00187A
  24. Cuevasanta E., Lange M., Bonanata J., Coitiño E.L., Ferrer-Sueta G., Filipovic M.R., Alvarez B. // J. Biol. Chem. 2015. V. 290. P. 26866–26880. https://doi.org/10.1074/jbc.M115.672816
  25. Armstrong D.A., Huie R.E., Koppenol W.H., Lymar S.V., Merenyi G., Neta P., Ruscic B., Stanbury D.M., Steenken S., Wardman P. // Pure Appl. Chem. 2015. V. 87. P. 1139–1150. https://doi.org/10.1515/pac-2014-0502
  26. Koppenol W.H., Bounds P.L. // Arch. Biochem. Biophys. 2017. V. 617. P. 3–8. https://doi.org/10.1016/j.abb.2016.09.012
  27. Wedmann R., Zahl A., Shubina T.E., Dürr M., Heinemann F.W., Bugenhagen B.E.C., Burger P., Ivanovic-Burmazovic I., Filipovic M.R. // Inorg. Chem. 2015. V. 54. P. 9367–9380. https://doi.org/10.1021/acs.inorgchem.5b00831
  28. Kolluru G.K., Shen X., Kevil C.G. // Redox Biol. 2013. V.1. P. 313–318. https://doi.org/10.1016/j.redox.2013.05.001
  29. Miranda K.M., Paolocci N., Katori T., Thomas D.D., Ford E., Bartberger M.D., Espey M.G., Kass D.A., Feelisch M., Fukuto J.M., Wink D.A. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 9196–9201. https://doi.org/10.1073/pnas.1430507100
  30. Mathai J.C., Missner A., Kügler P., Saparov S.M., Zeidel M.L., Lee J.K., Pohl P. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 16633–16638. https://doi.org/10.1073/pnas.0902952106
  31. Gadalla M.M., Snyder S.H. // J. Neurochem. 2010. V. 113. P. 14–26. https://doi.org/10.1111/j.1471-4159.2010.06580.x
  32. Kabil O., Banerjee R. // Antioxid. Redox Signal. 2014. V. 20. P. 770–782. https://doi.org/10.1089/ars.2013.5339
  33. Paul B.D., Snyder S.H. // Trends Biochem. Sci. 2015. V. 40. P. 687–700. https://doi.org/10.1016/j.tibs.2015.08.007
  34. Banerjee R., Zou C.G. // Arch. Biochem. Biophys. 2005. V. 433. P. 144–156. https://doi.org/10.1016/j.abb.2004.08.037
  35. Singh S., Madzelan P., Banerjee R. // Nat. Prod. Rep. 2007. V. 24. P. 631–639. https://doi.org/10.1039/b604182p
  36. Vicente J.B., Colaço H.G., Sarti P., Leandro P., Giuffrè A. // J. Biol. Chem. 2016. V. 291. P. 572–581. https://doi.org/10.1074/jbc.M115.681221
  37. Vitvitsky V., Thomas M., Ghorpade A., Gendelman H.E., Banerjee R. // J. Biol. Chem. 2006. V. 281. P. 35785–35793. https://doi.org/10.1074/jbc.M602799200
  38. Kimura H. // Exp. Physiol. 2011. V. 96. P. 833–835. https://doi.org/10.1113/expphysiol.2011.057455
  39. Chiku T., Padovani D., Zhu W., Singh S., Vitvitsky V., Banerjee R. // J. Biol. Chem. 2009. V. 284. P. 11601– 11612. https://doi.org/10.1074/jbc.M808026200
  40. Yang G., Wu L., Jiang B., Yang W., Qi J., Cao K., Meng Q., Mustafa A.K., Mu W., Zhang S., Snyder S.H., Wang R. // Science. 2008. V. 322. P. 587–590. https://doi.org/10.1126/science.1162667
  41. Huang J., Niknahad H., Khan S., O’Brien P.J. // Biochem. Pharmacol. 1998. V. 55. P. 1983–1990. https://doi.org/10.1016/s0006-2952(98)00072-0
  42. Westrop G.D., Georg I., Coombs G.H. // J. Biol. Chem. 2009. V. 284. P. 33485–33494. https://doi.org/10.1074/jbc.M109.054320
  43. Kolluru G.K., Shen X., Bir S.C., Kevil C.G. // Nitric Oxide. 2013. V. 35. P. 5–20. https://doi.org/10.1016/j.niox.2013.07.002
  44. Domán A., Dóka É., Garai D., Bogdándi V., Balla G., Balla J., Nagy P. // Redox Biol. 2023. V. 60. P. 102617. https://doi.org/10.1016/j.redox.2023.102617
  45. Pietri R., Román-Morales E., López-Garriga J. // Antioxid. Redox Signal. 2011. V. 15. P. 393–404. https://doi.org/10.1089/ars.2010.3698
  46. Nicholls P., Kim J.K. // Biochim. Biophys. Acta. 1981. V. 637. P. 312–320. https://doi.org/10.1016/0005-2728(81)90170-5
  47. Collman J.P., Ghosh S., Dey A., Decréau R.A. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 22090– 22095. https://doi.org/10.1073/pnas.0904082106
  48. Nicholls P. // Biochem. Soc. Trans. 1975. V. 3. P. 316– 319. https://doi.org/10.1042/bst0030316
  49. Vitvitsky V., Yadav P.K., An S., Seravalli J., Cho U.S., Banerjee R. // J. Biol. Chem. 2017. V. 292. P. 5584– 5592. https://doi.org/10.1074/jbc.M117.774943
  50. Goubern M., Andriamihaja M., Nübel T., Blachier F., Bouillaud F. // FASEB J. 2007. V. 21. P. 1699–1706. https://doi.org/10.1096/fj.06-7407com
  51. Kabil O., Banerjee R. // J. Biol. Chem. 2010. V. 285. P. 21903–21907. https://doi.org/10.1074/jbc.R110.128363
  52. Pedre B., Talwar D., Barayeu U., Schilling D., Luzarowski M., Sokolowski M., Glatt S., Dick T.P. // Nat. Chem. Biol. 2023. V. 19. P. 507–517. https://doi.org/10.1038/s41589-022-01244-8
  53. Bianco C.L., Akaike T., Ida T., Nagy P., Bogdandi V., Toscano P., Kumagai Y., Henderson C.F., Goddu R.N., Lin J., Fukuto J.M. // Br. J. Pharmacol. 2019. V. 176. P. 671–683. https://doi.org/10.1111/bph.14372
  54. Toohey J.I., Cooper A.J.L. // Molecules. 2014. V. 19. P. 12789–12813. https://doi.org/10.3390/molecules190812789
  55. Jüdes A., Bruch A., Klassen R., Helm M., Schaffrath R. // Microb. Cell. 2016. V. 3. P. 554–564. https://doi.org/10.15698/mic2016.11.539
  56. Kimura Y., Koike S., Shibuya N., Lefer D., Ogasawara Y., Kimura H. // Sci. Rep. 2017. V. 7. P. 10459. https://doi.org/10.1038/s41598-017-11004-7
  57. Zhang D., MacInkovic I., Devarie-Baez N.O., Pan J., Park C.M., Carroll K.S., Filipovic M.R., Xian M. // Angew. Chem. Int. Ed. Engl. 2014. V. 53. P. 575–581. https://doi.org/10.1002/anie.201305876
  58. Cortese-Krott M.M., Fernandez B.O., Santos J.L.T., Mergia E., Grman M., Nagy P., Kelm M., Butler A., Feelisch M. // Redox Biol. 2014. V. 2. P. 234– 244. https://doi.org/10.1016/j.redox.2013.12.031
  59. Akaike T., Ida T., Wei F.Y., Nishida M., Kumagai Y., Alam M.M., Ihara H., Sawa T., Matsunaga T., Kasamatsu S., Nishimura A., Morita M., Tomizawa K., Nishimura A., Watanabe S., Inaba K., Shima H., Tanuma N., Jung M., Fujii S., Watanabe Y., Ohmuraya M., Nagy P., Feelisch M., Fukuto J.M., Motohashi H. // Nat. Commun. 2017. V. 8. P. 1177. https://doi.org/10.1038/s41467-017-01311-y
  60. Mishanina T.V., Libiad M., Banerjee R. // Nat. Chem. Biol. 2015. V. 11. P. 457–464. https://doi.org/10.1038/nchembio.1834
  61. Toohey J.I. // Anal. Biochem. 2011. V. 413. P. 1–7. https://doi.org/10.1016/j.ab.2011.01.044
  62. Fukuto J.M., Ignarro L.J., Nagy P., Wink D.A., Kevil C.G., Feelisch M., Cortese-Krott M.M., Bianco C.L., Kumagai Y., Hobbs A.J., Lin J., Ida T., Akaike T. // FEBS Lett. 2018. V. 592. P. 2140–2152. https://doi.org/10.1002/1873-3468.13090
  63. Kimura H. // Molecules. 2014. V. 19. P. 16146–16157. https://doi.org/10.3390/molecules191016146
  64. Ida T., Sawa T., Ihara H., Tsuchiya Y., Watanabe Y., Kumagai Y., Suematsu M., Motohashi H., Fujii S., Matsunaga T., Yamamoto M., Ono K., DevarieBaez N.O., Xian M., Fukuto J.M., Akaike T. // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 7606–7611. https://doi.org/10.1073/pnas.1321232111
  65. Wedmann R., Onderka C., Wei S., Szijártó I.A., Miljkovic J.L., Mitrovic A., Lange M., Savitsky S., Yadav P.K., Torregrossa R., Harrer E.G., Harrer T., Ishii I., Gollasch M., Wood M.E., Galardon E., Xian M., Whiteman M., Banerjee R., Filipovic M.R. // Chem. Sci. 2016. V. 7. P. 3414–3426. https://doi.org/10.1039/C5SC04818D
  66. Dóka É., Pader I., Bíró A., Johansson K., Cheng Q., Ballagó K., Prigge J.R., Pastor-Flores D., Dick T.P., Schmidt E.E., Arnér E.S.J., Nagy P. // Sci. Adv. 2016. V. 2. P. 1500968. https://doi.org/10.1126/sciadv.1500968
  67. O’Neill L.A.J., Kaltschmidt C. // Trends Neurosci. 1997. V. 20. P. 252–258. https://doi.org/10.1016/S0166-2236(96)01035-1
  68. Lee Z.W., Teo X.Y., Tay E.Y.W., Tan C.H., Hagen T., Moore P.K., Deng L.W. // Br. J. Pharmacol. 2014. V. 171. P. 4322–4336. https://doi.org/10.1111/bph.12773
  69. Zhao K., Ju Y., Li S., Altaany Z., Wang R., Yang G. // EMBO Rep. 2014. V. 15. P. 792–800. https://doi.org/10.1002/embr.201338213
  70. Jiang B., Tang G., Cao K., Wu L., Wang R. // Antioxid. Redox Signal. 2010. V. 12. P. 1167–1178. https://doi.org/10.1089/ars.2009.2894
  71. Shaidullov I.F., Shafigullin M.U., Gabitova L.M., Sitdikov F.G., Zefirov A.L., Sitdikova G.F. // J. Evol. Biochem. Phys. 2018. V. 54. P. 400–407. https://doi.org/10.1134/S0022093018050083
  72. Papapetropoulos A., Pyriochou A., Altaany Z., Yang G., Marazioti A., Zhou Z., Jeschke M.G., Branski L.K., Herndon D.N., Wang R., Szabó C. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 21972–21977. https://doi.org/10.1073/pnas.0908047106
  73. Eberhardt M., Dux M., Namer B., Miljkovic J., Cordasic N., Will C., Kichko T.I., de la Roche J., Fischer M., Suárez S.A., Bikiel D., Dorsch K., Leffler A., Babes A., Lampert A., Lennerz J.K., Jacobi J., Martí M.A., Doctorovich F., Högestätt E.D., Zygmunt P.M., Ivanovic-Burmazovic I., Messlinger K., Reeh P., Filipovic M.R. // Nat. Commun. 2014. V. 5. P. 4381. https://doi.org/10.1038/ncomms5381
  74. Altaany Z., Ju Y., Yang G., Wang R. // Sci. Signal. 2014. V. 7. P. ra87. https://doi.org/10.1126/scisignal.2005478
  75. Bucci M., Papapetropoulos A., Vellecco V., Zhou Z., Zaid A., Giannogonas P., Cantalupo A., Dhayade S., Karalis K.P., Wang R., Feil R., Cirino G. // PLoS One. 2012. V. 7. P. e53319. https://doi.org/10.1371/journal.pone.0053319
  76. Paulsen C.E., Truong T.H., Garcia F.J., Homann A., Gupta V., Leonard S.E., Carroll K.S. // Nat. Chem. Biol. 2011. V. 8. P. 57–64. https://doi.org/10.1038/nchembio.736
  77. Zivanovic J., Kouroussis E., Kohl J.B., Adhikari B., Bursac B., Schott-Roux S., Petrovic D., Miljkovic J.L., Thomas-Lopez D., Jung Y., Miler M., Mitchell S., Milosevic V., Gomes J.E., Benhar M., Gonzales-Zorn B., Ivanovic-Burmazovic I., Torregrossa R., Mitchell J.R., Whiteman M., Schwarz G., Snyder S.H., Paul B.D., Carroll K.S., Filipovic M.R. // Cell Metab. 2019. V. 30. P. 1152–1170.e13. https://doi.org/10.1016/j.cmet.2019.10.007
  78. Tao B.-B., Liu S.-Y., Zhang C.-C., Fu W., Cai W.-J., Wang Y., Shen Q., Wang M.-J., Chen Y., Zhang L.-J., Zhu Y.-Z., Zhu Y.-C. // Antioxid. Redox Signal. 2013. V. 19. P. 448–464. https://doi.org/10.1089/ars.2012.4565
  79. Wu D., Hu Q., Zhu D. // Oxid. Med. Cell Longev. 2018. P. 4579140. https://doi.org/10.1155/2018/4579140
  80. Kolluru G.K., Shackelford R.E., Shen X., Dominic P., Kevil C.G. // Nat. Rev. Cardiol. 2023. V. 20. P. 109– 125. https://doi.org/10.1038/s41569-022-00741-6
  81. Robert K., Vialard F., Thiery E., Toyama K., Sinet P.-M., Janel N., London J. // J. Histochem. Cytochem. 2003. V. 51. P. 363–371. https://doi.org/10.1177/002215540305100311
  82. Luo H., Wu P.-F., Han Q.-Q., Cao Y., Deng S.-L., Wang J., Deng Q., Wang F., Chen J.-G. // Antioxid. Redox Signal. 2019. V. 30. P. 1880–1899. https://doi.org/10.1089/ars.2018.7503
  83. García-Bereguiaín M.A., Samhan-Arias A.K., MartínRomero F.J., Gutiérrez-Merino C. // Antioxid. Redox Signal. 2008. V. 10. P. 31–42. https://doi.org/10.1089/ars.2007.1656
  84. Han Y., Qin J., Chang X., Yang Z., Tang X., Du J. // Biochem. Biophys. Res. Commun. 2005. V. 327. P. 431–436. https://doi.org/10.1016/j.bbrc.2004.12.028
  85. Rangel-Galván M., Rangel-Galván V., Rangel-Huerta A. // Front. Pharmacol. 2023. V. 14. P. 1212800. https://doi.org/10.3389/fphar.2023.1212800
  86. Tsubota-Matsunami M., Noguchi Y., Okawa Y., Sekiguchi F., Kawabata A. // J. Pharmacol. Sci. 2012. V. 119. P. 293–296. https://doi.org/10.1254/jphs.12086sc
  87. Lu M., Choo C.H., Hu L.-F., Tan B.H., Hu G., Bian J.-S. // Neurosci. Res. 2010. V. 66. P. 92–98. https://doi.org/10.1016/j.neures.2009.09.1713
  88. Whiteman M., Cheung N.S., Zhu Y.-Z., Chu S.H., Siau J.L., Wong B.S., Armstrong J.S., Moore P.K. // Biochem. Biophys. Res. Commun. 2005. V. 326. P. 794–798. https://doi.org/10.1016/j.bbrc.2004.11.110
  89. Tyagi N., Moshal K.S., Sen U., Vacek T.P., Kumar M., Hughes W.M., Kundu S., Tyagi S.C. // Antioxid. Redox Signal. 2009. V. 11. P. 25–33. https://doi.org/10.1089/ars.2008.2073
  90. Giuliani D., Ottani A., Zaffe D., Galantucci M., Strinati F., Lodi R., Guarini S. // Neurobiol. Learn Mem. 2013. V. 104. P. 82–91. https://doi.org/10.1016/j.nlm.2013.05.006
  91. Zhang H., Gao Y., Zhao F., Dai Z., Meng T., Tu S., Yan Y. // Neurochem. Int. 2011. V. 58. P. 169–175. https://doi.org/10.1016/j.neuint.2010.11.010
  92. Liu Y.-Y., Bian J.-S. // J. Alzheimers Dis. 2010. V. 22. P. 1189–1200. https://doi.org/10.3233/JAD-2010-101002
  93. Nagpure B.V., Bian J.-S. // PLoS One. 2014. V. 9. P. e88508. https://doi.org/10.1371/journal.pone.0088508
  94. Sbodio J.I., Snyder S.H., Paul B.D. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 8843–8848. https://doi.org/10.1073/pnas.1608264113
  95. Vandiver M.S., Paul B.D., Xu R., Karuppagounder S., Rao F., Snowman A.M., Seok Ko H., Il Lee Y., Dawson V.L., Dawson T.M., Sen N., Snyder S.H. // Nat. Commun. 2013. V. 4. P. 1626. https://doi.org/10.1038/ncomms2623
  96. Sun H.-J., Wu Z.-Y., Nie X.-W., Bian J.-S. // Curr. Neuropharmacol. 2021. V. 19. P. 868–884. https://doi.org/10.2174/1570159X18666200905143550
  97. Yang W., Yang G., Jia X., Wu L., Wang R. // J. Physiol. 2005. V. 569. P. 519–531. https://doi.org/10.1113/jphysiol.2005.097642
  98. Yang G., Yang W., Wu L., Wang R. // J. Biol. Chem. 2007. V. 282. P. 16567–16576. https://doi.org/10.1074/jbc.M700605200
  99. Pahwa R., Goyal A., Jialal I. // Chronic Inflammation / In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2023.
  100. Soomro S. // Open J. Immunol. 2019. V. 9. P. 1–20. https://doi.org/10.4236/oji.2019.91001
  101. Trummer M., Galardon E., Mayer B., Steiner G., Stamm T., Kloesch B. // Nitric Oxide. 2022. V. 129. P. 41–52. https://doi.org/10.1016/j.niox.2022.09.005
  102. Zhang T., Tsutsuki H., Ono K., Akaike T., Sawa T. // J. Clin. Biochem. Nutr. 2021. V. 1. P. 5–8. https://doi.org/ 10.3164/jcbn.20-13
  103. Arsenijevic D., Stojanovic B., Milovanovic J., Arsenijevic A., Simic M., Pergal M., Kodranov I., Cvetkovic O., Vojvodic D., Ristanovic E., Manojlovic D., Milovanovic M., Arsenijevic N. // Nutrients. 2021. V. 13. P. 1022. https://doi.org/10.3390/nu13031022
  104. Tamizhselvi R., Moore P.K., Bhatia M. // Pancreas. 2008. V. 4. P. e24–e31. https://doi.org/10.1097/MPA.0b013e31816857bb
  105. Bhatia M., Gaddam R.R. // Antioxid. Redox Signal. 2021. V. 34. P. 1368–1377. https://doi.org/10.1089/ars.2020.8211
  106. Norris E.J., Culberson C.R., Narasimhan S., Clemens M.G. // Shock. 2011. V. 3. P. 242–250. https://doi.org/10.1097/SHK.0b013e3182252ee7
  107. Mani S., Cao W., Wu L., Wang R. // Nitric Oxide. 2014. V. 41. P. 62–71. https://doi.org/10.1016/j.niox.2014.02.006
  108. Sun H.-J., Wu Z.-Y., Nie X.-W., Wang X.-Y., Bian J.-S. // J. Adv. Res. 2021. V. 27. P. 127–135. https://doi.org/10.1016/j.jare.2020.05.010
  109. Tan G., Pan S., Li J., Dong X., Kang K., Zhao M., Jiang X., Kanwar J.R., Qiao H., Jiang H., Sun X. // PLoS One. 2011. V. 6. P. e25943. https://doi.org/10.1371/journal.pone.0025943
  110. Xia M., Chen L., Muh R.W., Li P.L., Li N. // J. Pharmacol. Exp. Ther. 2009. V. 329. P. 1056–62. https://doi.org/10.1124/jpet.108.149963
  111. Nagahara N., Ito T., Kitamura H., Nishino T. // Histochemistry. 1998. V. 110. P. 243–250. https://doi.org/10.1007/s004180050286
  112. Bos E.M., Wang R., Snijder P.M., Boersema M., Damman J., Fu M., Moser J., Hillebrands J.L., Ploeg R.J., Yang G., Leuvenink H.G., van Goor H. // J. Am. Soc. Nephrol. 2013. V. 5. P. 759–770. https://doi.org/10.1681/ASN.2012030268
  113. Feng J., Lu X., Li H., Wang S. // Ren. Fail. 2022. V. 44. P. 1290–1309. https://doi.org/10.1080/0886022X.2022.2107936
  114. Shiota M., Naya M., Yamamoto T., Hishiki T., Tani T., Takahashi H., Kubo A., Koike D., Itoh M., Ohmura M., Kabe Y., Sugiura Y., Hiraoka N., Morikawa T., Takubo K., Suina K., Nagashima H., Sampetrean O., Nagano O., Saya H., Yamazoe S., Watanabe H., Suematsu M. // Nat. Commun. 2018. V. 9. P. 1561. https://doi.org/10.1038/s41467-018-03899-1
  115. Honda K., Hishiki T., Yamamoto S., Yamamoto T., Miura N., Kubo A., Itoh M., Chen W.-Y., Takano M., Yoshikawa T., Kasamatsu T., Sonoda S., Yoshizawa H., Nakamura S., Itai Y., Shiota M., Koike D., Naya M., Hayakawa N., Naito Y., Matsuura T., Iwaisako K., Masui T., Uemoto S., Nagashima K., Hashimoto Y., Sakuma T., Matsubara O., Huang W., Ida T., Akaike T., Masugi Y., Sakamoto M., Kato T., Ino Y., Yoshida H., Tsuda H., Hiraoka N., Kabe Y., Suematsu M. // Redox Biol. 2021. V. 41. P. 101926. https://doi.org/10.1016/j.redox.2021.101926
  116. Yu F., Han X., Chen L. // Chem. Commun. 2014. V. 50. P. 12234–12249. https://doi.org/10.1039/C4CC03312D
  117. Lin V.S., Lippert A.R., Chang C.J. // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 7131–7135. https://doi.org/10.1073/pnas.1302193110
  118. Lippert A.R., New E.J., Chang C.J. // J. Am. Chem. Soc. 2011. V. 133. P. 10078–10080. https://doi.org/10.1021/ja203661j
  119. Wu M.-Y., Li K., Hou J.-T., Huang Z., Yu X.-Q. // Org. Biomol. Chem. 2012. V. 10. P. 8342–8347. https://doi.org/10.1039/C2OB26235E
  120. Liu C., Pan J., Li S., Zhao Y., Wu L.Y., Berkman C.E., Whorton A.R., Xian M. // Angew. Chem. Int. Ed. Engl. 2011. V. 50. P. 10327–10329. https://doi.org/10.1002/anie.201104305
  121. Liu J., Sun Y.-Q., Zhang J., Yang T., Cao J., Zhang L., Guo W. // Chemistry. 2013. V. 19. P. 4717–4722. https://doi.org/10.1002/chem.201300455
  122. Chen Y., Zhu C., Yang Z., Chen J., He Y., Jiao Y., He W., Qiu L., Cen J., Guo Z. // Angew. Chem. Int. Ed. Engl. 2013. V. 52. P. 1688–1691. https://doi.org/10.1002/anie.201207701
  123. Pak Y.L., Li J., Ko K.C., Kim G., Lee J.Y., Yoon J. // Anal. Chem. 2016. V. 88. P. 5476–5481. https://doi.org/10.1021/acs.analchem.6b00956
  124. Smith R.M., Martell A.E. // Critical Stability Constants. New York: Springer, 1976. https://doi.org/10.1007/978-1-4757-5506-0
  125. Sasakura K., Hanaoka K., Shibuya N., Mikami Y., Kimura Y., Komatsu T., Ueno T., Terai T., Kimura H., Nagano T. // J. Am. Chem. Soc. 2011. V. 133. P. 18003–18005. https://doi.org/10.1021/ja207851s
  126. Kaushik R., Ghosh A., Amilan Jose D. // Coord. Chem. Rev. 2017. V. 347. P. 141–157. https://doi.org/10.1016/j.ccr.2017.07.003
  127. Gao M., Wang R., Yu F., Li B., Chen L. // J. Mater. Chem. B. 2018. V. 6. P. 6637–6645. https://doi.org/10.1039/c8tb01794h
  128. Gao M., Wang R., Yu F., You J., Chen L. // J. Mater. Chem. B. 2018. V. 6. P. 2608–2619. https://doi.org/10.1039/c7tb03200e
  129. Echizen H., Sasaki E., Hanaoka K. // Biomolecules. 2021. V. 11. P. 1553. https://doi.org/10.3390/biom11111553
  130. Chen S., Chen Z., Ren W., Ai H. // J. Am. Chem. Soc. 2012. V. 134. P. 9589–9592. https://doi.org/10.1021/ja303261d
  131. Hu X., Li H., Zhang X., Chen Z., Zhao R., Hou N., Liu J., Xun L., Liu H. // Anal. Chem. 2019. V. 91. P. 3893–3901. https://doi.org/10.1021/acs.analchem.8b04634
  132. Li Z., Wang Q., Xia Y., Xun L., Liu H. // Antioxidants. 2020. V. 9. P. 985. https://doi.org/10.3390/antiox9100985
  133. Müller A., Schneider J.F., Degrossoli A., Lupilova N., Dick T.P., Leichert L.I. // Free Radic. Biol. Med. 2017. V. 106. P. 329–338. https://doi.org/10.1016/j.freeradbiomed.2017.02.044
  134. Paulsen C.E., Carroll K.S. // Chem. Rev. 2013. V. 113. P. 4633–4679. https://doi.org/10.1021/cr300163e
  135. Nagy P., Pálinkás Z., Nagy A., Budai B., Tóth I., Vasas A. // Biochim. Biophys. Acta. 2014. V. 1840. P. 876–891. https://doi.org/10.1016/j.bbagen.2013.05.037
  136. Xu T., Scafa N., Xu L.-P., Zhou S., Al-Ghanem K.A., Mahboob S., Fugetsu B., Zhang X. // Analyst. 2016. V. 141. P. 1185–1195. https://doi.org/10.1039/C5AN02208H
  137. Ibrahim H., Serag A., Farag M.A. // J. Adv. Res. 2021. V. 27. P. 137–153. https://doi.org/10.1016/j.jare.2020.05.018
  138. Quan F.-S., Lee G.-J. // Biomed. Res. Int. 2021. V. 2021. P. 5473965. https://doi.org/10.1155/2021/5473965
  139. Haddad P.R., Heckenberg A.L. // J. Chromatogr. 1988. V. 447. P. 415–420. https://doi.org/10.1016/0021-9673(88)90054-4
  140. Vitvitsky V., Banerjee R. // Methods Enzymol. 2015. V. 554. P. 111–123. https://doi.org/10.1016/bs.mie.2014.11.013
  141. Wintner E.A., Deckwerth T.L., Langston W., Bengtsson A., Leviten D., Hill P., Insko M.A., Dumpit R., VandenEkart E., Toombs C.F., Szabo C. // Br. J. Pharmacol. 2010. V. 160. P. 941–957. https://doi.org/10.1111/j.1476-5381.2010.00704.x
  142. Wedding R.T. // Methods Enzymol. 1987. V. 143. P. 29–31. https://doi.org/10.1016/0076-6879(87)43010-3
  143. Doeller J.E., Isbell T.S., Benavides G., Koenitzer J., Patel H., Patel R.P., Lancaster J.R., Darley-Usmar V.M., Kraus D.W. // Anal. Biochem. 2005. V. 341. P. 40–51. https://doi.org/10.1016/j.ab.2005.03.024
  144. Whitfield N.L., Kreimier E.L., Verdial F.C., Skovgaard N., Olson K.R. // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008. V. 294. P. R1930–R1937. https://doi.org/10.1152/ajpregu.00025.2008
  145. Furne J., Saeed A., Levitt M.D. // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008. V. 295. P. R1479– R1485. https://doi.org/10.1152/ajpregu.90566.2008
  146. Wood J.L. // Methods Enzymol. 1987. V. 143. P. 25–29. https://doi.org/10.1016/0076-6879(87)43009-7
  147. Numakura T., Sugiura H., Akaike T., Ida T., Fujii S., Koarai A., Yamada M., Onodera K., Hashimoto Y., Tanaka R., Sato K., Shishikura Y., Hirano T., Yanagisawa S., Fujino N., Okazaki T., Tamada T., Hoshikawa Y., Okada Y., Ichinose M. // Thorax. 2017. V. 72. P. 1074–1083. https://doi.org/10.1136/thoraxjnl-2016-209359
  148. Liu C., Zhang F., Munske G., Zhang H., Xian M. // Free Radic. Biol. Med. 2014. V. 76. P. 200–207. https://doi.org/10.1016/j.freeradbiomed.2014.08.003
  149. Hannestad U., Margheri S., Sörbo B. // Anal. Biochem. 1989. V. 178. P. 394–398. https://doi.org/10.1016/0003-2697(89)90659-3
  150. Mustafa A.K., Gadalla M.M., Sen N., Kim S., Mu W., Gazi S.K., Barrow R.K., Yang G., Wang R., Snyder S.H. // Sci. Signal. 2009. V. 2. P. ra72. https://doi.org/10.1126/scisignal.2000464
  151. Pan J., Carroll K.S. // ACS Chem. Biol. 2013. V. 8. P. 1110–1116. https://doi.org/10.1021/cb4001052
  152. Smyth D., Blumenfeld O., Konigsberg W. // Biochem. J. 1964. V. 91. P. 589–595. https://doi.org/10.1042/bj0910589
  153. Gao X.-H., Krokowski D., Guan B.-J., Bederman I., Majumder M., Parisien M., Diatchenko L., Kabil O., Willard B., Banerjee R., Wang B., Bebek G., Evans C.R., Fox P.L., Gerson S.L., Hoppel C.L., Liu M., Arvan P., Hatzoglou M. // eLife. 2015. V. 4. P. e10067. https://doi.org/10.7554/eLife.10067
  154. Longen S., Richter F., Köhler Y., Wittig I., Beck K.-F., Pfeilschifter J. // Sci. Rep. 2016. V. 6. P. 29808. https://doi.org/10.1038/srep29808
  155. Iciek M., Bilska-Wilkosz A., Kozdrowicki M., Górny M. // Biosci. Rep. 2022. V. 42. P. BSR20221006. https://doi.org/10.1042/BSR20221006
  156. Li M., Mao J., Zhu Y. // Antioxid. Redox Signal. 2021. V. 35. P. 341–356. https://doi.org/10.1089/ars.2020.8249
  157. Magli E., Perissutti E., Santagada V., Caliendo G., Corvino A., Esposito G., Esposito G., Fiorino F., Migliaccio M., Scognamiglio A., Severino B., Sparaco R., Frecentese F. // Biomolecules. 2021. V. 11. P. 1899. https://doi.org/10.3390/biom11121899

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Active forms of sulfur, ordered by the formal oxidation states of sulfur atoms. Arrows indicate genealogical relationships discussed further in the text.

Жүктеу (266KB)
3. Fig. 2. The main pathways of H2S formation in the mammalian organism. CBS – cystathionine-β-synthase, CGL – cystathionine γ-lyase, CAT – cysteine ​​aminotransferase, 3MP – 3-mercaptopyruvate, 3-MST – 3-mercaptopyruvate sulfotransferase.

Жүктеу (233KB)
4. Fig. 3. Main APS-mediated modifications of protein molecules, explanations in the text.

Жүктеу (171KB)
5. Fig. 4. Mitochondrial metabolism of H2S and interaction with components of the respiratory chain. CytC – cytochrome c, Q – ubiquinone, QH₂ – ubiquinol, PDO – persulfide dioxygenase, SHR – sulfoquinone reductase, CO – sulfite oxidase, III – the third complex of the respiratory chain ubiquinol-cytochrome c reductase, IV – the fourth complex of the respiratory chain cytochrome c oxidase.

Жүктеу (187KB)
6. Fig. 5. Regulation of vasodilation by H₂S and ∙NO. PRGC – calcitonin gene-related peptide, KATP channel – ATP-dependent K⁺ channel, AC – adenylate cyclase, GC – guanylate cyclase, CGL – cystathionine-γ-lyase, VEGF – vascular endothelial growth factor, eNOS – endothelial nitric oxide synthase, NOX – NADPH oxidase.

Жүктеу (357KB)
7. Fig. 6. APS-mediated regulation in neurons, explanations in the text. NMDAR – ionotropic NMDA receptor, APP – amyloid precursor protein, TRPA1 – Transient receptor potential cation channel subfamily A member 1, Nrf2 – nuclear E2 related factor 2, Keap1 – Kelch-like ECH-associated protein 1.

Жүктеу (337KB)
8. Fig. 7. Fluorescent dyes for detection of H₂S (a–g) and sulfane compounds (d, e). (a, b) – Representatives of dyes that reduce H₂S to an amino group from an azide group (a) or a nitro group (b); (c) – dyes with two electrophilic groups, discrimination of H₂S from other thiol agents is shown; (d) – precipitation dye based on the formation of CuS from Cu²⁺, leading to increased fluorescence; (d, e) – dyes that react with sulfane compounds based on nucleophilic (d) or electrophilic (f) groups, followed by increased fluorescence.

Жүктеу (473KB)
9. Fig. 8. Approaches for detection of APS-mediated modifications of proteins and peptides. MMTS – S-methylmethanethiosulfonate, biotin-GPDP – N-[6-(biotinamido)hexyl]-3′-(2′-pyridylthio)propionamide, DTT – dithiothreitol, PEG₂ – polyethyleneglycol, MSBT – methylsulfonylbenzothiazole. See text for explanations.

Жүктеу (387KB)

© Russian Academy of Sciences, 2024