Promising Directions for Regulating Signaling Pathways Involved in the Type 2 Diabetes Mellitus Development
- Authors: Borozdina N.A.1,2, Popkova D.V.3, Dyachenko I.A.1,2
-
Affiliations:
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Branch of the Russian Biotechnological University (ROSBIOTECH)
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences
- Issue: Vol 50, No 4 (2024)
- Pages: 412-435
- Section: Articles
- URL: https://archivog.com/0132-3423/article/view/670833
- DOI: https://doi.org/10.31857/S0132342324040057
- EDN: https://elibrary.ru/MXCDMS
- ID: 670833
Cite item
Abstract
Many studies confirm that substances of natural origin have a pronounced affinity for type 2 diabetes mellitus (T2DM) therapeutic targets. At the moment, there is growing interest in bioactive peptides, phytochemicals, and drugs from other natural sources as highly effective, safe and promising antidiabetic agents. Natural sources are a promising resource for regulating several pathological pathways in T2DM. The review describes ways to mitigate insulin resistance and tissue sensitivity to glucose through PTP1β (protein tyrosine phosphatase 1β), GLP-1R (glucagon-like peptide receptor), DPP-4 (dipeptidyl peptidase-4), AMPK (adenosine monophosphate activated protein kinase), MAPK (mitogen-activated protein kinase). Regulation of obesity and oxidative stress development through CCN3 (nephroblastoma overexpressed gene), PPAR-γ (peroxisome proliferator-activated receptor γ), Nrf2 (nuclear factor erythroid-related factor 2), FFAR (free fatty acid receptors), 11β-HSD1 (11β-hydroxysteroid dehydrogenase). Regulation of hyperglycemia through alpha-amylase inhibitors, regulation of glucose metabolism through GFAT (glutamine fructose-6-phosphate aminotransferase), FOXO1 (forkhead box protein O1), GLUT4 (glucose transporter type 4), PGC-1α (receptor gamma coactivator 1α activating peroxisome proliferator). The review examines the use of natural sources, from which low-molecular-weight and peptide compounds are used as T2DM targets modulators.
Full Text

About the authors
N. A. Borozdina
Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Branch of the Russian Biotechnological University (ROSBIOTECH)
Author for correspondence.
Email: borozdina@bibch.ru
Russian Federation, prosp. Nauki 6, Pushchino, 142290; prosp. Nauki 3, Pushchino, 142290
D. V. Popkova
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences
Email: borozdina@bibch.ru
Russian Federation, prosp. 100 let Vladivostoku 159, Vladivostok, 690022
I. A. Dyachenko
Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Branch of the Russian Biotechnological University (ROSBIOTECH)
Email: borozdina@bibch.ru
Russian Federation, prosp. Nauki 6, Pushchino, 142290; prosp. Nauki 3, Pushchino, 142290
References
- Danaei G., Finucane M.M., Lu Y., Singh G.M., Cowan M.J., Paciorek C.J., Lin J.K., Farzadfar F., Khang Y.H., Stevens G.A., Rao M., Ali M.K., Riley L.M., Robinson C.A., Ezzati M. // Lancet. 2011. V. 378. P. 31–40. https://doi.org/10.1016/s0140-6736(11)60679-x
- Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D., Ohlrogge A.W., Malanda B. // Diabetes Res. Clin. Pract. 2018. V. 138. P. 271–281. https://doi.org/10.1016/j.diabres.2018.02.023
- Artasensi A., Pedretti A., Vistoli G., Fumagalli L. // Molecules. 2020. V. 25. P. 1987. https://doi.org/10.3390/molecules25081987
- Moller D.E. // Cell Metab. 2012. V. 15. P. 19–24. https://doi.org/10.1016/j.cmet.2011.10.012
- Maruthur N.M., Tseng E., Hutfless S., Wilson L.M., Suarez-Cuervo C., Berger Z., Chu Y., Iyoha E., Segal J.B., Bolen S. // Ann. Intern. Med. 2016. V. 164. P. 740–751. https://doi.org/10.7326/m15-2650
- Liu Z., Zhao X., Sun W., Wang Y., Liu S., Kang L. // Exp. Ther. Med. 2017. V. 13. P. 3137–3145. https://doi.org/10.3892/etm.2017.4333
- Wirngo F.E., Lambert M.N., Jeppesen P.B. // Rev. Diabet. Stud. 2016. V. 13. P. 113–131. https://doi.org/10.1900/rds.2016.13.113
- Wahab A. // Pharmaceuticals (Basel). 2010. V. 3. P. 2090–2110. https://doi.org/10.3390/ph3072090
- Kanwal A., Kanwar N., Bharati S., Srivastava P., Singh S.P., Amar S. // Biomedicines. 2022. V. 10. P. 331. https://doi.org/10.3390/biomedicines10020331
- Antony P., Vijayan R. // Int. J. Mol. Sci. 2021. V. 22. P. 9059. https://doi.org/10.3390/ijms22169059
- Borah A.K., Ahmed S.A., Borah J.C. // Phytomedicine Plus. 2022. V. 2. P. 100225. https://doi.org/10.1016/j.phyplu.2022.100225
- Navale A.M., Paranjape A.N. // Biophys. Rev. 2016. V. 8. P. 5–9. https://doi.org/10.1007/s12551-015-0186-2
- Ismail A., Tanasova M. // Int. J. Mol. Sci. 2022. V. 23. P. 8698. https://doi.org/10.3390/ijms23158698
- Konrad D., Bilan P.J., Nawaz Z., Sweeney G., Niu W., Liu Z., Antonescu C.N., Rudich A., Klip A. // Diabetes. 2002. V. 51. P. 2719–2726. https://doi.org/10.2337/diabetes.51.9.2719
- Lee J.O., Lee S.K., Kim J.H., Kim N., You G.Y., Moon J.W., Kim S.J., Park S.H., Kim H.S. // J. Biol. Chem. 2012. V. 287. P. 44121–44129. https://doi.org/10.1074/jbc.M112.361386
- Herman R., Kravos N.A., Jensterle M., Janež A., Dolžan V. // Int. J. Mol. Sci. 2022. V. 23. P. 1264. https://doi.org/10.3390/ijms23031264
- Bailey C., Day C. // Pract. Diabetes Int. 2004. V. 21. P. 115–117. https://doi.org/10.1002/pdi.606
- Rosak C., Mertes G. // Diabetes Metab. Syndr. Obes. 2012. V. 5. P. 357–367. https://doi.org/10.2147/dmso.s28340
- Shishtar E., Sievenpiper J.L., Djedovic V., Cozma A.I., Ha V., Jayalath V.H., Jenkins D.J., Meija S.B., de Souza R.J., Jovanovski E., Vuksan V. // PLoS One. 2014. V. 9. P. e107391. https://doi.org/10.1371/journal.pone.0107391.
- Kania-Dobrowolska M., Baraniak J. // Foods. 2022. V. 11. P. 2858. https://doi.org/10.3390/foods11182858
- Costello R.B., Dwyer J.T., Saldanha L., Bailey R.L., Merkel J., Wambogo E. // J. Acad. Nutr. Diet. 2016. V. 116. P. 1794–1802. https://doi.org/10.1016/j.jand.2016.07.015
- Sharma S., Mandal A., Kant R., Jachak S., Jagzape M. // J. Pak. Med. Assoc. 2020. Vol. 70. P. 2065–2069.
- Hu K., Huang H., Li H., Wei Y., Yao C. // Nutrients. 2023. V. 15. P. 1096. https://doi.org/10.3390/nu15051096
- Choi J., Kim K.-J. Koh E.-J., Lee B.-Y. // Nutrients. 2018. V. 10. P. 51. https://doi.org/10.3390/nu10010051
- Kovacs P., Hanson R.L., Lee Y.-H., Yang X., Kobes S., Permana P.A., Bogardus C., Baier L.J. // Diabetes. 2003. V. 52. P. 3005–3009. https://doi.org/10.2337/diabetes.52.12.3005
- Eckstein S.S., Weigert C., Lehmann R. // Curr. Med. Chem. 2017. V. 24. P. 1827–1852. https://doi.org/10.2174/0929867324666170426142826
- Chang Q., Li Y., White M.F., Fletcher J.A., Xiao S. // Cancer Res. 2002. V. 62. P. 6035–6038.
- Wang Y., Nishina P.M., Naggert J.K. // J. Endocrinol. 2009. V. 203. P. 65–74. https://doi.org/10.1677/JOE-09-0026
- Faddladdeen K.A.J. // Folia Morphol. (Warsz). 2021. V. 80. P. 149–157. https://doi.org/10.5603/FM.a2020.0034
- Shrivastava S.R., Shrivastava P.S., Ramasamy J. // J. Diabetes Metab. Disord. 2013. V. 12. P. 14. https://doi.org/10.1186/2251-6581-12-14
- Stull A.J., Wang Z.Q., Zhang X.H., Yu Y., Johnson W.D., Cefalu W.T. // Diabetes. 2012. V. 61. P. 1415–1422. https://doi.org/10.2337/db11-0744
- Behl T., Gupta A., Sehgal A., Albarrati A., Albratty M., Meraya A.M., Najmi A., Bhatia S., Bungau S. // Biomed. Pharmacother. 2022. V. 153. P. 113405. https://doi.org/10.1016/j.biopha.2022.113405
- Jung H.J., Seong S.H., Ali M.Y., Min B.S., Jung H.A., Choi J.S. // Arch. Pharm. Res. 2017. V. 40. P. 1403– 1413. https://doi.org/10.1007/s12272-017-0992-0
- Coughlan K.A., Valentine R.J., Ruderman N.B., Saha A.K. // Diabetes Metab. Syndr. Obes. 2014. V. 7. P. 241–253. https://doi.org/10.2147/DMSO.S43731
- Dugan L.L., You Y.H., Ali S.S., Diamond-Stanic M., Miyamoto S., DeCleves A.E., Andreyev A., Quach T., Ly S., Shekhtman G., Nguyen W., Chepetan A., Le T.P., Wang L., Xu M., Paik K.P., Fogo A., Viollet B., Murphy A., Brosius F., Naviaux R.K., Sharma K. // J. Clin. Invest. 2013. V. 123. P. 4888–4899. https://doi.org/10.1172/JCI66218
- Wu H., Deng X., Shi Y., Su Y., Wei J., Duan H. // J. Endocrinol. 2016. V. 229. P. R99–R115. https://doi.org/10.1530/JOE-16-0021
- Kleiner S., Mepani R.J., Laznik D., Ye L., Jurczak M.J., Jornayvaz F.R., Estall J.L., Chatterjee Bhowmick D., Shulman G.I., Spiegelman B.M. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 9635–9640. https://doi.org/10.1073/pnas.1207287109
- Rius-Pérez S., Torres-Cuevas I., Millán I., Ortega Á.L., Pérez S. // Oxid. Med. Cell Longev. 2020. V. 2020. P. 1452696. https://doi.org/10.1155/2020/1452696
- Kim M.J., Yun H., Kim D.H., Kang I., Choe W., Kim S.S., Ha J. // J. Ginseng Res. 2014. V. 38. P. 16–21. https://doi.org/10.1016/j.jgr.2013.11.010
- Hsu W.H., Chen T.H., Lee B.H., Hsu Y.W., Pan T.M. // Food Chem. Toxicol. 2014. V. 64. P. 94–103. https://doi.org/10.1016/j.fct.2013.11.015
- Li X., Wang L., Ma H. // Mol. Med. Rep. 2019. V. 20. P. 1754–1760. https://doi.org/10.3892/mmr.2019.10391
- Xu Z., Sun J., Tong Q., Lin Q., Qian L., Park Y., Zheng Y. // Int. J. Mol. Sci. 2016. V. 17. P. 2001. https://doi.org/10.3390/ijms17122001
- Kawano Y., Ryder J.W., Rincon J., Zierath J.R., Krook A., Wallberg-Henriksson H. // Am. J. Physiol. Endocrinol. Metab. 2001. V. 281. P. E1255–E1259. https://doi.org/10.1152/ajpendo.2001.281.6.e1255
- Huang X., Liu G., Guo J., Su Z. // Int. J. Biol. Sci. 2018. V. 14. P. 1483–1496. https://doi.org/10.7150/ijbs.27173.
- Song C., Liu D., Yang S., Cheng L., Xing E., Chen Z. // Exp. Ther. Med. 2018. V. 16. P. 3345–3352. https://doi.org/10.3892/etm.2018.6615
- Li J.C., Shen X.F., Shao J.A., Tao M.M., Gu J., Li J., Huang N. // Drug Des. Devel. Ther. 2018. V. 12. P. 2695–2706. https://doi.org/10.2147/DDDT.S171025
- Yang Q., Wen Y.M., Shen J., Chen M.M., Wen J.H., Li Z.M., Liang Y.Z., Xia N. // Diabetes Metab. Syndr. Obes. 2020. V. 13. P. 713–718. https://doi.org/10.2147/DMSO.S231979
- Cooper M.S., Stewart P.M. // J. Clin. Endocrinol. Metab. 2009. V. 94. P. 4645–4654. https://doi.org/10.1210/jc.2009-1412
- Blum A., Loerz C., Martin H.J., Staab-Weijnitz C.A., Maser E. // J. Steroid Biochem. Mol. Biol. 2012. V. 128. P. 51–55. https://doi.org/10.1016/j.jsbmb.2011.09.003
- Hintzpeter J., Stapelfeld C., Loerz C., Martin H.-J., Maser E. // PLoS One. 2014. V. 9. P. e84468. https://doi.org/10.1371/journal.pone.0084468
- Damayanti D.S., Utomo D.H., Kusuma C. // In Silico Pharmacol. 2016. V. 5. P. 3. https://doi.org/10.1007/s40203-017-0023-3
- Kang S., Tsai L.T., Rosen E.D. // Trends Cell Biol. 2016. V. 26. P. 341–351. https://doi.org/10.1016/j.tcb.2016.01.002
- Asadi S., Rahimi Z., Saidijam M., Shabab N., Goodarzi M.T. // Int. J. Mol. Cell Med. 2018. V. 7. P. 176–184. https://doi.org/10.22088/IJMCM.BUMS.7.3.176
- Kim D.H., Kim S.M., Lee B., Lee E.K., Chung K.W., Moon K.M., An H.J., Kim K.M., Yu B.P., Chung H.Y. // J. Nutr. Biochem. 2017. V. 45 P. 104–114. https://doi.org/10.1016/j.jnutbio.2017.04.014
- Marchelek-Mysliwiec M., Nalewajska M., TurońSkrzypińska A., Kotrych K., Dziedziejko V., Sulikowski T., Pawlik A. // Int. J. Mol. Sci. 2022. V. 23. P. 11611. https://doi.org/10.3390/ijms231911611
- Tang C., Ahmed K., Gille A., Lu S., Gröne H.J., Tunaru S., Offermanns S. // Nat. Med. 2015. V. 21. P. 173–177. https://doi.org/10.1038/nm.3779
- Prentice K.J., Wheeler M.B. // Cell Metab. 2015. V. 21. P. 353–354. https://doi.org/10.1016/j.cmet.2015.02.015
- Feng X.T., Duan H.M., Li S.L. // Int. J. Mol. Med. 2017. V. 40. P. 922–930. https://doi.org/10.3892/ijmm.2017.3070
- Dwitiyanti D., Harahap Y., Elya B., Bahtiar A. // Adv. Pharmacol. Pharm. Sci. 2021. V. 2021. P. 8869571. https://doi.org/10.1155/2021/8869571
- De León D.D., Crutchlow M.F., Ham J.Y., Stoffers D.A. // Int. J. Biochem. Cell Biol. 2006. V. 38. P. 845–859. https://doi.org/10.1016/j.biocel.2005.07.011
- Li Y., Zhang W., Zhao R., Zhang X. // Bioact. Mater. 2022. V. 15. P. 392–408. https://doi.org/10.1016/j.bioactmat.2022.02.025
- Seino Y., Fukushima M., Yabe D. // J. Diabetes Investig. 2010. V. 1. P. 8–23. https://doi.org/10.1111/j.2040-1124.2010.00022.x
- Chao E.C. // Clin. Diabetes. 2014. V. 32. P. 4–11. https://doi.org/10.2337/diaclin.32.1.4
- Saisho Y. // Diseases. 2020. V. 8. P. 14. https://doi.org/10.3390/diseases8020014
- Xu B., Li S., Kang B., Zhou J. // Cardiovasc. Diabetol. 2022. V. 21. P. 83. https://doi.org/10.1186/s12933-022-01512-w
- Moradi-Marjaneh R., Paseban M., Sahebkar A. // Phytother. Res. 2019. V. 33. P. 2518–2530. https://doi.org/10.1002/ptr.6421
- Anderson J.E. // Diabetes Spectr. 2020. V. 33. P. 165–174. https://doi.org/10.2337/ds19-0031
- Choi C.-I. // Molecules. 2016. V. 21. P. 1136. https://doi.org/10.3390/molecules21091136
- McCarty M.F., DiNicolantonio J.J. // Open Heart. 2015. V. 2. P. e000205. https://doi.org/10.1136/openhrt-2014-000205
- Taslimi P., Aslan H.E., Demir Y., Oztaskin N., Maraş A., Gulçin İ., Beydemir S., Goksu S. // Int. J. Biol. Macromol. 2018. V. 119. P. 857–863. https://doi.org/10.1016/j.ijbiomac.2018.08.004
- Li H., Zhou H., Zhang J., Fu X., Ying Z., Liu X. // Int. J. Food Properties. 2021. V. 24. P. 277–290. https://doi.org/10.1080/10942912.2021.1876087
- Brunkhorst C., Schneider E. // Res. Microbiol. 2005. V. 156. P. 851–857. https://doi.org/10.1016/j.resmic.2005.03.008
- Rosak C., Mertes G. // Curr. Diabetes Rev. 2009. V. 5. P. 157–164. https://doi.org/10.2174/157339909788920910
- Dalsgaard N.B., Gasbjerg L.S., Hansen L.S., Hansen N.L., Stensen S., Hartmann B., Rehfeld J.F., Holst J.J., Vilsbøll T., Knop F.K. // Eur. J. Endocrinol. 2021. V. 184. P. 383–394. https://doi.org/10.1530/EJE-20-1121
- Hofmann O., Vértesy L., Braunitzer G. // Biol. Chem. Hoppe Seyler. 1985. V. 366. P. 1161–1168. https://doi.org/10.1515/bchm3.1985.366.2.1161
- Heyl D.L., Fernandes S., Khullar L., Stephens J., Blaney E., Opang-Owusu H., Stahelin B., Pasko T., Jacobs J., Bailey D., Brown D., Milletti M.C. // Bioorg. Med. Chem. 2005. V. 13. P. 4262– 4268. https://doi.org/10.1016/j.bmc.2005.04.019
- Ben Nejma M., Sioud O., Mastouri M. // 3 Biotech. 2018. V. 8. P. 1. https://doi.org/10.1007/s13205-017-1019-8
- Saxena L., Iyer B. K., Ananthanarayan L. // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010. V. 878. P. 1549–1554. https://doi.org/10.1016/j.jchromb.2010.04.009
- Heo S.J., Hwang J.Y., Choi J.I., Han J.S., Kim H.J., Jeon Y.J. // Eur. J. Pharmacol. 2009. V. 615. P. 252– 256. https://doi.org/10.1016/j.ejphar.2009.05.017
- Admassu H., Gasmalla M.A.A., Yang R., Zhao W. // J. Agricult. Food Chem. 2018. V. 66. P. 4872–4882. https://doi.org/10.1021/acs.jafc.8b00960
- Tysoe C., Williams L.K., Keyzers R., Nguyen N.T., Tarling C., Wicki J., Goddard-Borger E.D., Aguda A.H., Perry S., Foster L.J., Andersen R.J., Brayer G.D., Withers S.G. // ACS Cent Sci. 2016. V. 2. P. 154–161. https://doi.org/10.1021/acscentsci.5b00399
- Sintsova O., Popkova D., Kalinovskii A., Rasin A., Borozdina N., Shaykhutdinova E., Klimovich A., Menshov A., Kim N., Anastyuk S., Kusaykin M., Dyachenko I., Gladkikh I., Leychenko E. // Biomed. Pharmacother. 2023. V. 168. P. 115743. https://doi.org/10.1016/j.biopha.2023.115743
- Sintsova O.V., Leychenko E.V., Gladkikh I.N., Anastyuk S.D., Monastyrnaya M.M., and Kozlovskaya E.P. // Vestnik of the Far East Branch of the Russian Academy of Sciences. 2018. V. 6S. P. 66. https://doi.org/10.25808/08697698.2018.202.6S.082
- Sintsova O., Gladkikh I., Kalinovskii A., Zelepuga E., Monastyrnaya M., Kim N., Shevchenko L., Peigneur S., Tytgat J., Kozlovskaya E., Leychenko E. // Marine Drugs. 2019. V. 17. P. 542. https://doi.org/10.3390/md17100542
- Bhuyan P., Sarma S., Ganguly M., Hazarika J., Mahanta R. // J. Mol. Structure. 2020. V. 1222. P. 128957. https://doi.org/10.1016/j.molstruc.2020.128957
- Schleicher E.D., Weigert C. // Kidney Int. Suppl. 2000. V. 58. P. S13–S18. https://doi.org/10.1046/j.1523-1755.2000.07703.x
- Srinivasan V., Sandhya N., Sampathkumar R., Farooq S., Mohan V., Balasubramanyam M. // Clin. Biochem. 2007. V. 40. P. 952–957. https://doi.org/10.1016/j.clinbiochem.2007.05.002
- Li J.Y., Wang Y.D., Qi X.Y., Ran L., Hong T., Yang J., Yan B., Liao Z.Z., Liu J.H., Xiao X.H. // Clin. Chim. Acta. 2019. V. 494. P. 52–57. https://doi.org/10.1016/j.cca.2019.03.006
- Peng L., Wei Y., Shao Y., Li Y., Liu N., Duan L. // Mediators Inflamm. 2021. V. 2021. P. 5576059. https://doi.org/10.1155/2021/5576059
- Paradis R., Lazar N., Antinozzi P., Perbal B., Buteau J. // PLoS One. 2013. V. 8. P. e64957. https://doi.org/10.1371/journal.pone.0064957
- Wang H., Huang B., Hou A., Xue L., Wang B., Chen J., Li M., Zhang J.V. // Am. J. Physiol. Endocrinol. Metab. 2021. V. 320. P. E786–E796. https://doi.org/10.1152/ajpendo.00230.2020
- Wang P., Sang S. // Biofactors. 2018. V. 44. P. 16–25. https://doi.org/10.1002/biof.1410
- Xia N., Daiber A., Förstermann U., Li H. // Br. J. Pharmacol. 2017. V. 174. P. 1633–1646. https://doi.org/10.1111/bph.13492
- Zheng T., Chen H. // Mol. Immunol. 2021. V. 137. P. 163–173. https://doi.org/10.1016/j.molimm.2021.06.011
- Frkic R.L., Richter K., Bruning J.B. // J. Biol. Chem. 2021. V. 297. P. 101030. https://doi.org/10.1016/j.jbc.2021.101030
- Rangwala S.M., Lazar M.A. // Trends Pharmacol. Sci. 2004. V. 25. P. 331–336. https://doi.org/10.1016/j.tips.2004.03.012.
- Ma X., Wang D., Zhao W., Xu L. // Front. Endocrinol (Lausanne). 2018. V. 9. P. 473. https://doi.org/10.3389/fendo.2018.00473
- Александров А.А. // РМЖ. 2011. Т. 13. С. 847.
- Mazidi M., Karimi E., Meydani M., GhayourMobarhan M., Ferns G.A. // World J. Methodol. 2016. V. 6. P. 112–127. https://doi.org/10.5662/wjm.v6.i1.112
- Balbaa M., El-Zeftawy M., Abdulmalek S.A. // Molecules. 2021. V. 26. P. 6836. https://doi.org/10.3390/molecules26226836
- Sireesh D., Dhamodharan U., Ezhilarasi K., Vijay V., Ramkumar K.M. // Sci. Rep. 2018. V. 8. P. 5126. https://doi.org/10.1038/s41598-018-22913-6
- Reis A.A. da S., Santos R. da S., Cruz A.H. da S., Silva E.G. da, Cruz A.D. da, Pedrino G.R. // InTech. 2016. https://doi.org/10.5772/66132
- Zamanian M.Y., Giménez-Llort L., Nikbakhtzadeh M., Kamiab Z., Heidari M., Bazmandegan G. // Curr. Mol. Pharmacol. 2023. V. 16. P. 331–345. https://doi.org/10.2174/1874467215666220620143655
- Cuadrado A., Manda G., Hassan A., Alcaraz M.J., Barbas C., Daiber A., Ghezzi P., León R., López M.G., Oliva B., Pajares M., Rojo A.I., Robledinos-Antón N., Valverde A.M., Guney E., Schmidt H.H.H.W. // Pharmacol. Rev. 2018. V. 70. P. 348–383. https://doi.org/10.1124/pr.117.014753
- Matzinger M., Fischhuber K., Heiss E.H. // Biotechnol. Adv. 2018. V. 36. P. 1738–1767. https://doi.org/10.1016/j.biotechadv.2017.12.015
- Ghareghomi S., Rahban M., Moosavi-Movahedi Z., Habibi-Rezaei M., Saso L., Moosavi-Movahedi A.A. // Molecules. 2021. V. 26. P. 7658. https://doi.org/10.3390/molecules26247658
- Chang C.L., Lin Y., Bartolome A.P., Chen Y.C., Chiu S.C., Yang W.C. // Evid. Based Complement Alternat. Med. 2013. V. 2013. P. 378657. https://doi.org/10.1155/2013/378657
- Riyaphan J., Pham D.C., Leong M.K., Weng C.F. // Biomolecules. 2021. V. 11. P. 1877. https://doi.org/10.3390/biom11121877
- Agarwal P. // Res. Rev. J. Med. Health Sci. 2016. V. 5. P. 1–8.
- Atanasov A.G., Zotchev S.B., Dirsch V.M., International Natural Product Sciences Taskforce, Supuran C.T. // Nat. Rev. Drug Discov. 2021. V. 20. P. 200–216. https://doi.org/10.1038/s41573-020-00114-z
Supplementary files
