Methods for Introdusing Fluorescent Labels into Polysaccharides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Polysaccharides are widely represented in plants and bacteria, where they are distinguished by their extraordinary structural diversity and the performance of various functions. To study the functions of polysaccharides, their fluorescent labeling is needed. This review discusses methods for introducing fluorescent labels into polysaccharides by chemical modification of certain functional groups of these complex biopolymers, as well as using the so-called bioorthogonal reactions, which allow labeling in a cell without affecting its viability. In addition to modification with organic dyes, the possibility of using quantum dots and coordination compounds of lanthanides is also discussed.

Full Text

Restricted Access

About the authors

A. Yu. Nokel

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russian Federation

Email: professorbovin@yandex.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Oparina 4, Moscow, 117997

N. V. Bovin

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: professorbovin@yandex.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

A. B. Tuzikov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: professorbovin@yandex.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

T. V. Ovchinnikova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: professorbovin@yandex.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

N. V. Shilova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russian Federation

Email: professorbovin@yandex.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Oparina 4, Moscow, 117997

References

  1. Held M.A., Jiang N., Basu D., Showalter A.M., Faik A. // In: Polysaccharides / Eds. Ramawat K., Mérillon J.M. Springer, Cham, 2014. Р. 1–47. https://doi.org/10.1007/978-3-319-03751-6_73-1
  2. Mbongue J.C., Vanterpool E., Firek A., Langridge W.H.R. // Immuno. 2022. V. 2. P. 482–500. https://doi.org/10.3390/immuno2030030
  3. Alexander C., Rietschel E.T. // J. Endotoxin Res. 2001. V. 7. P. 167–202.
  4. Olivera-Ardid S., Khasbiullina N., Nokel A., Formanovsky A., Popova I., Tyrtysh T., Kunetskiy R., Shilova N., Bovin N., Bello-Gil D., Mañez R. // J. Vis. Exp. 2019. V. 144. e57662. https://doi.org/10.3791/57662
  5. Khasbiullina N.R., Bovin N.V. // Biochem. 2015. V. 80. P. 820–835. https://doi.org/10.1134/S0006297915070032
  6. Tuzikov A.B., Rapoport E.M., Khaidukov S.V., Nokel E.A., Knirel Y.A., Bovin N.V. // Glycoconj. J. 2021. V. 38. P. 369–374. https://doi.org/10.1007/s10719-021-09993-9
  7. Principles of Fluorescence Spectroscopy / Ed. Lakowicz J.R. Springer New York, NY, 2006. https://doi.org/10.1007/978-0-387-46312-4
  8. Cabral Campello M.P., Palma E., Correia I., Paulo P.M.R., Matos A., Rino J., Coimbra J., Pessoa J.C., Gambino D., Paulo A., Marques F. // Dalton Trans. 2019. V. 48. P. 4611–4624. https://doi.org/10.1039/c9dt00640k
  9. Weissman S.I. // J. Chem. Phys. 1942. V. 10. P. 214–217. https://doi.org/10.1063/1.1723709
  10. Bayer M. // Ann. Phys. 2019. V. 531. Р. 900039. https://doi.org/10.1002/andp.201900039
  11. Dumas E., Gao C., Suffern D., Bradforth S.E., Dimitrijevic N.M., Nadeau J.L. // Environ. Sci. Technol. 2010. V. 44. P. 1464–1470. https://doi.org/10.1021/es902898d
  12. Gulia S., Kakkar R. // Adv. Mat. Lett. 2013. V. 4. P. 876–887. https://doi.org/10.5185/amlett.2013.3440
  13. Granada-Ramírez D.A., Arias-Cerón J.S., Rodriguez-Fragoso P., Vázquez-Hernández F., Luna-Arias J.P., Herrera-Perez J.L., Mendoza-Álvarez J.G. // Nanobiomaterials. 2018. P. 411–436. https://doi.org/10.1016/B978-0-08-100716-7.00016-7
  14. Xing Y., Rao J. // Cancer Biomarkers. V. 4. P. 307–319. https://doi.org/10.3233/CBM-2008-4603
  15. Sukhanova A., Venteo L., Devy J., Artemyev M., Oleinikov V., Pluot M., Nabiev I. // Lab. Invest. 2002. V. 82. P. 1259–1261. https://doi.org/10.1097/01.LAB.0000027837.13582.E8
  16. Олейников В.А., Суханова А.В., Набиев И.Р. // Рос. нанотехнологии. 2007. Т. 2. № 1–2. С. 160–173.
  17. Xu X., Ray R., Gu Y., Ploehn H.J., Gearheart L., Raker K., Scrivens W.A. // J. Am. Chem. Soc. 2004. V. 126. P. 12736–12737. https://doi.org/10.1021/ja040082h
  18. Sun Y.P., Zhou B., Lin Y., Wang W., Fernando K.A.S., Pathak P., Meziani M.J., Harruff B.A., Wang X., Wang H., Luo P.G., Yang H., Kose M.E., Chen B., Veca L.M., Xie S. // J. Am. Chem. Soc. 2006. V. 128. P. 7756–7757. https://doi.org/10.1021/ja062677d
  19. Diaz-Diestra D., Thapa B., Badillo-Diaz D., BeltranHuarac J., Morell G., Weiner B.R. // Nanomaterials. 2018. V. 8. P. 1–18. https://doi.org/10.3390/nano8070484
  20. Zhu H., Wang X., Li Y., Wang Z., Yang F., Yang X. // Chem. Commun. 2009. V. 34. P. 5118–5120. https://doi.org/10.1039/b907612c
  21. Li H., Ming H., Liu Y., Yu H., He X., Huang H., Pan K., Kang Z., Lee S.T. // New J. Chem. 2011. V. 35. P. 2666–2670. https://doi.org/10.1039/c1nj20575g
  22. Liu M.L., Yang L., Li R.S., Chen B.B., Liu H., Huang C.Z. // Green Chem. 2017. V. 19. P. 3611–3617. https://doi.org/10.1039/c7gc01236e
  23. Hess W.M., Herd C.R. // In: Carbon Black / Ed. Donnet J.-B. Marcel Dekker Inc. 1993. Р. 89–173. https://doi.org/10.1201/9781315138763-3
  24. Xiao L., Wang Y., Huang Y., Wong T., Sun H. // Nanoscale. 2017. V. 9. P. 12637–12646. https://doi.org/10.1039/c7nr03913a
  25. Tsien R.Y. // FEBS Lett. 2005. V. 579. P. 927–932. https://doi.org/10.1016/j.febslet.2004.11.025
  26. Song Y.R., Sung S.K., Jang M., Lim T.G., Cho C.W., Han C.J., Hong H.D. // Int. J. Biol. Macromol. 2018. V. 116. P. 1089–1097. https://doi.org/10.1016/j.ijbiomac.2018.05.132
  27. Meunier F., Wilkinson K.J. // Biomacromolecules. 2002. V. 3. P. 857–864. https://doi.org/10.1021/bm0255241
  28. O’Shea M.G., Morell M.K. // Electrophoresis. 1996. V. 17. P. 681–686. https://doi.org/10.1002/elps.1150170410
  29. Nakajima K., Oda Y., Kinoshita M., Masuko T., Kakehi K. // Analyst. 2002. V. 127. P. 972–976. https://doi.org/10.1039/b202950b
  30. Partyka J., Krenkova J., Cmelik R., Foret F. // J. Chromatogr. A. 2018. V. 1560. P. 91–96. https://doi.org/10.1016/j.chroma.2018.05.030
  31. Song X., Xia B., Stowell S.R., Lasanajak Y., Smith D.F., Cummings R.D. // Chem. Biol. 2009. V. 16. P. 36–47. https://doi.org/10.1016/j.chembiol.2008.11.004
  32. Yoshida T., Lee Y.C. // Carbohydr. Res. 1994. V. 251. P. 175–186. https://doi.org/10.1016/0008-6215(94)84284-1
  33. Ruhaak L.R., Steenvoorden E., Koeleman C.A.M., Deelder A.M., Wuhrer M. // Proteomics. 2010. V. 10. P. 2330–2336. https://doi.org/10.1002/pmic.200900804
  34. Cosenza V.A., Navarro D.A., Stortz C.A. // Arkivoc. 2011. № 7. P. 182–194. https://doi.org/10.3998/ark.5550190.0012.716
  35. Ruhaak L.R., Wuhrer M. // Patent EP2306199A1, published 06.04.2011.
  36. Burkhardt E.R., Coleridge B.M. // Tetrahedron Lett. 2008. V. 49. P. 5152–5155. https://doi.org/10.1016/j.tetlet.2008.06.095
  37. Li P., Li C., Xue Y., Zhang Y., Liu H., Zhao X., Yu G., Guan H. // J. Ocean Univ. China. 2014. V. 13. P. 683–690. https://doi.org/10.1007/s11802-014-2273-6
  38. Fry S.C. // Plant J. 1997. V. 11. P. 1141–1150. https://doi.org/10.1046/j.1365-313X.1997.11051141.x
  39. Seo J.H., Kim C.S., Hwang B.H., Cha H.J. // Nanotechnology. 2010. V. 21. P. 215101. https://doi.org/10.1088/0957-4484/21/21/215101
  40. Alley W.R., Mann B.F., Hruska V., Novotny M.V. // Anal. Chem. 2013. V. 85. P. 10408–10416. https://doi.org/10.1021/ac4023814
  41. Likhosherstov L.M., Novikova O.S., Derevitskaja V.A., Kochetkov N.K. // Carbohydr. Res. 1986. V. 146. P. C1–C5. https://doi.org/10.1016/0008-6215(86)85037-6
  42. Tang J.S.J., Schade K., Tepper L., Chea S., Ziegler G., Rosencrantz R.R. // Molecules. 2020. V. 25. P. 1–14. https://doi.org/10.3390/molecules25215121
  43. Likhosherstov L.M., Novikova O.S., Shibaev V.N. // Dokl. Chem. 2002. V. 838. P. 89–92. https://doi.org/10.1023/A:1015428720733
  44. Likhosherstov L.M., Novikova O.S., Shibaev V.N. // Dokl. Chem. 2003. V. 389. P. 73–76. https://doi.org/10.1023/A:1023484306457
  45. Likhosherstov L.M., Novikova O.S., Zheltova A.O., Shibaev V.N. // ChemInform. 2004. V. 35. P. 709–713. https://doi.org/10.1002/chin.200452177
  46. Manger I.D., Wong S.Y.C., Rademacher T.W., Dwek R.A. // Biochemistry. 1992. V. 31. P. 10733– 10740. https://doi.org/10.1021/bi00159a013
  47. Likhosherstov L.M., Novikova O.S., Kolotyrkina N.G., Yamskov I.A., Piskarev V.E. // Russ. Chem. Bull. 2014. V. 63. P. 507–510. https://doi.org/10.1007/s11172-014-0461-6
  48. Likhosherstov L.M., Novikova O.S., Kolotyrkina N.G., Piskarev V.E. // Russ. Chem. Bull. 2019. V. 68. P. 411–415. https://doi.org/10.1007/s11172-019-2401-y
  49. Bohorov O., Andersson-Sand H., Hoffmann J., Blixt O. // Glycobiology. 2006. V. 16. P. 21C–27C. https://doi.org/10.1093/glycob/cwl044
  50. Lattová E., Perreault H. // Mass Spectrom. Rev. 2013. V. 32. P. 366–385. https://doi.org/10.1002/mas.21367
  51. Hull S.R., Turco S.J. // Anal. Biochem. 1985. V. 146. P. 143–149. https://doi.org/10.1016/0003-2697(85)90408-7
  52. Shinohara Y., Sota H., Gotoh M., Hasebe M., Tosu M., Nakao J., Hasegawa Y., Shiga M. // Int. J. Comput. Vis. 1996. V. 18. P. 2573–2579.
  53. Ingham K.C., Brew S.A. // Biochim. Biophys. Acta. 1981. V. 670. P. 181–189. https://doi.org/10.1016/0005-2795(81)90007-6
  54. Ridley B.L., Spiro M.D., Glushka J., Albersheim P., Darvill A., Mohnen D. // Anal. Biochem. 1997. V. 249. P. 10–19. https://doi.org/10.1006/abio.1997.2165
  55. Zhang Y., Wang Z., Zhang X., Zhou W., Huang L. // Carbohydr. Res. 2011. V. 346. P. 2156–2164. https://doi.org/10.1016/j.carres.2011.07.014
  56. Dimakos V., Taylor M.S. // Chem. Rev. 2018. V. 118. P. 11457–11517. https://doi.org/10.1021/acs.chemrev.8b00442
  57. Georges L.W., Carl H. // Patent US2428843A, published 14.10.1947.
  58. Abushammala H., Mao J.A. // Molecules. 2019. V. 24. P. 2782. https://doi.org/10.3390/molecules24152782
  59. Янкаускайте Д.П., Дикчювене А.А., Паулюконис А.-А.Б., Глемжа А.-С.А. // Авторское свидетельство СССР № 732278, опубл. 05.05.1980.
  60. de Belder A.N., Granath K. // Carbohydr. Res. 1973. V. 30. P. 375–378. https://doi.org/10.1016/S0008-6215(00)81824-8
  61. Unnikrishnan B.S., Preethi G.U., Sreeranganathan M., Syama H.P., Archana M.G., Sreelekha T.T. // J. Drug Deliv. Sci. Technol. 2019. V. 52. P. 863–869. https://doi.org/10.1016/j.jddst.2019.06.009
  62. Sun M., Su F., Yang J., Gao Z., Geng Y. // Polymers (Basel). 2018. V. 10. P. 372. https://doi.org/10.3390/polym10040372
  63. Abitbol T., Palermo A., Moran-Mirabal J.M., Cranston E.D. // Biomacromolecules. 2013. V. 14. P. 3278–3284. https://doi.org/10.1021/bm400879x
  64. Heyna J. // Angew. Chemie Int. Ed. Engl. 1963. V. 2. P. 20–23. https://doi.org/10.1002/anie.196300201
  65. Park J.W., Kim Y., Lee K.J., Kim D.J. // Bioconjug. Chem. 2012. V. 23. P. 350–362. https://doi.org/10.1021/bc200232d
  66. Cheng F., Shang J., Ratner D.M. // Bioconjug. Chem. 2011. V. 22. P. 50–57. https://doi.org/10.1021/bc1003372
  67. Knirel Y.A., Vinogradov E.V., Shashkov A.S., Dmitriev B.A., Kochetkov N.K., Stanislavsky E.S., Mashilova G.M. // Eur. J. Biochem. 1982. V. 125. P. 221–227. https://doi.org/10.1111/j.1432-1033.1982.tb06672.x
  68. Yi W., Bystricky P., Yao Q., Guo H., Zhu L., Li H., Shen J., Li M., Ganguly S., Bush C.A., Wang P.G. // Carbohydr. Res. 2006. V. 341. P. 100–108. https://doi.org/10.1016/j.carres.2005.11.001
  69. Perepelov A.V., Zhu H., Senchenkova S.N., Wang Q., Shashkov A.S., Wang L., Knirel Y.A. // Carbohydr. Res. 2011. V. 346. P. 2812–2815. https://doi.org/10.1016/j.carres.2011.09.013
  70. Perepelov A.V., Shekht M.E., Liu B., Shevelev S.D., Ledov V.A., Senchenkova S.N., L’vov V.L., Shashkov A.S., Feng L., Aparin P.G., Wang L., Knirel Y.A. // FEMS Immunol. Med. Microbiol. 2012. V. 66. P. 201–210. https://doi.org/10.1111/j.1574-695X.2012.01000.x
  71. Plumbridge J. // J. Mol. Microbiol. Biotechnol. 2015. V. 25. P. 154–167. https://doi.org/10.1159/000369583
  72. Carbohydrate Structure Database. http://csdb.glycoscience.ru/database/
  73. Lee S., Jo G., Jung J.S., Yang D.H., Hyun H. // Artif. Cells Nanomed. Biotechnol. 2020. V. 48. P. 1144– 1152. https://doi.org/10.1080/21691401.2020.1817054
  74. Aqueel M.S., Pathak V., Pathak A.K. // Tetrahedron Lett. 2008. V. 49. P. 7157–7160. https://doi.org/10.1016/j.tetlet.2008.09.164
  75. Onishi H., Machida Y. // Biomaterials. 1999. V. 20. P. 175–182. https://doi.org/10.1016/S0142-9612(98)00159-8
  76. Qaqish R.B., Amiji M.M. // Carbohydr. Polym. 1999. V. 38. P. 99–107. https://doi.org/10.1016/S0144-8617(98)00109-X
  77. Huang M., Ma Z., Khor E., Lim L.Y. // Pharm. Res. 2002. V. 19. P. 1488–1494. https://doi.org/10.1023/a:1020404615898
  78. Jiayin Z., Jianmin W., Chinese J. // Anal. Chem. 2006. V. 34. P. 1555–1559. https://doi.org/10.1016/S1872-2040(07)60015-2
  79. Moussa S.H., Tayel A.A., Al-Turki A.I. // Int. J. Biol. Macromol. 2013. V. 54. P. 204–208. https://doi.org/10.1016/j.ijbiomac.2012.12.029
  80. Mechref Y., El Rassi Z. // Electrophoresis. 1994. V. 15. P. 627–634. https://doi.org/10.1002/elps.1150150187
  81. Kobayashi M., Ichishima E. // Biosci. Biotechnol. Biochem. 1992. V. 56. P. 186–189. https://doi.org/10.1271/bbb.56.186
  82. Kobayashi M., Chiba Y. // Biosci. Biotechnol. Biochem. 1994. V. 58. P. 271–274. https://doi.org/10.1271/bbb.58.271
  83. Han Z.R., Wang Y.F., Liu X., Wu J.D., Cao H., Zhao X., Chai W.G., Yu G.L. // Chinese J. Anal. Chem. 2011. V. 39. P. 1352–1357. https://doi.org/10.1016/S1872-2040(10)60470-7
  84. Bohrn R., Potthast A., Rosenau T., Sixta H., Kosma P. // Synlett. 2005. № 20. P. 3087–3090. https://doi.org/10.1055/s-2005-921923
  85. Bohrn R., Potthast A., Schiehser S., Rosenau T., Sixta H., Kosma P. // Biomacromolecules. 2006. V. 7. P. 1743–1750. https://doi.org/10.1021/bm060039h
  86. Hutterer C., Fackler K., Potthast A. // ACS Sustain. Chem. Eng. 2017. V. 5. P. 1818–1823. https://doi.org/10.1021/acssuschemeng.6b02552
  87. Nimura N., Kinoshita T., Yoshida T., Uetake A., Nakai C. // Anal. Chem. 1988. V. 60. P. 2067–2070. https://doi.org/10.1021/ac00170a017
  88. Stephens D.J., Allan V.J. // Science. 2003. V. 300. P. 82–86. https://doi.org/10.1126/science.1082160
  89. Kolb H.C., Finn M.G., Sharpless K.B. // Angew. Chemie. 2001. V. 40. P. 2004–2021. https://doi.org/10.1002/1521-3773(20010601) 40:11<2004::AID-ANIE2004>3.0.CO;2-5
  90. Dube D.H., Bertozzi C.R. // Curr. Opin. Chem. Biol. 2003. V. 7. P. 616–625. https://doi.org/10.1016/j.cbpa.2003.08.006
  91. Bird R.E., Lemmel S.A., Yu X., Zhou Q.A. // Bioconjug. Chem. 2021. V. 32. P. 2457–2479. https://doi.org/10.1021/acs.bioconjchem.1c00461
  92. Carell T., Vrabel M. // Top. Curr. Chem. 2016. V. 374. P. 9. https://doi.org/10.1007/s41061-016-0010-x
  93. Prescher J.A., Dube D.H., Bertozzi C.R. // Nature. 2004. V. 430. P. 873–877. https://doi.org/10.1038/nature02791
  94. Prescher J.A., Bertozzi C.R. // Cell. 2006. V. 126. P. 851–854. https://doi.org/10.1016/j.cell.2006.08.017
  95. Prescher J.A., Bertozzi C.R. // Nat. Chem. Biol. 2005. V. 1. P. 13–21. https://doi.org/10.1038/nchembio0605-13
  96. Laughlin S.T., Bertozzi C.R. // Nat. Protoc. 2007. V. 2. P. 2930–2944. https://doi.org/10.1038/nprot.2007.422
  97. Laughlin S.T., Bertozzi C.R. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 12–17. https://doi.org/10.1073/pnas.0811481106
  98. Sletten E.M., Bertozzi C.R. // Angew. Chemie Int. Ed. Engl. 2009. V. 48. P. 6974–6998. https://doi.org/10.1002/anie.200900942
  99. Sletten E.M., Bertozzi C.R. // Acc. Chem. Res. 2011. V. 44. P. 666–676. https://doi.org/10.1021/ar200148z
  100. Liebert T., Hänsch C., Heinze T. // Macromol. Rapid Commun. 2006. V. 27. P. 208–213. https://doi.org/10.1002/marc.200500686
  101. Hasegawa T., Umeda M., Numata M., Li C., Bae A-H., Fujisawa T., Haraguchi S., Sakurai K., Shinkai S. // Carbohydr. Res. 2006. V. 341. P. 35–40. https://doi.org/10.1016/j.carres.2005.10.009
  102. Furuhata K. ichi, Koganei K., Chang H. S., Aoki N., Sakamoto M. // Carbohydr. Res. 1992. V. 230. P. 165–177. https://doi.org/10.1016/S0008-6215(00)90519-6
  103. Pierre-Antoine F., François B., Rachida Z. // Carbohydr. Res. 2012. V. 356. P. 247–251. https://doi.org/10.1016/j.carres.2011.10.028
  104. Koschella A., Hartlieb M., Heinze T. // Carbohydr. Polym. 2011. V. 86. P. 154–161. https://doi.org/10.1016/j.carbpol.2011.04.031
  105. Hafrén J., Zou W., Córdova A. // Macromol. Rapid Commun. 2006. V. 27. P. 1362–1366. https://doi.org/10.1002/marc.200600328
  106. Krouit M., Bras J., Belgacem M.N. // Eur. Polym. J. 2008. V. 44. P. 4074–4081. https://doi.org/10.1016/j.eurpolymj.2008.09.016
  107. Schatz C., Louguet S., Le Meins J.F., Lecommandoux S. // Angew. Chemie Int. Ed. Engl. 2009. V. 48. P. 2572–2575. https://doi.org/10.1002/anie.200805895
  108. De Geest B.G., Van Camp W., Du Prez F.E., De Smedt S.C., Demeester J., Hennink W.E. // Chem. Commun. (Camb). 2008. № 2. P. 190–192. https://doi.org/10.1039/b714199h
  109. Van Dijk-Wolthuis W.N.E., Hoogeboom J.A.M., Van Steenbergen M.J., Tsang S.K.Y., Hennink W.E. // Macromolecules. 1997. V. 30. P. 4639–4645. https://doi.org/10.1021/ma9704018
  110. Laville M., Babin J., Londono I., Legros M., Nouvel C., Durand A. Vanderesse R., Leonard M., Six J.L. // Carbohydr. Polym. 2013. V. 93. P. 537–546. https://doi.org/10.1016/j.carbpol.2012.11.050
  111. Pahimanolis N., Hippi U., Johansson L.S., Saarinen, T., Houbenov N., Ruokolainen J., Seppälä J. // Cellulose. 2011. V. 18. P. 1201–1212. https://doi.org/10.1007/s10570-011-9573-4
  112. Yuan W., Li X., Gu S., Cao A., Ren J. // Polymer (Guildf). 2011. V. 52. P. 658–666. https://doi.org/10.1016/j.polymer.2010.12.052.
  113. Yuan W., Zhao Z., Gu S., Ren J. // J. Polym. Sci. Part A Polym. Chem. 2010. V. 48. P. 3476–3486. https://doi.org/10.1002/pola.24136
  114. Montañez M.I., Hed Y., Utsel S., Ropponen J., Malmström E., Wågberg L., Hult A., Malkoch M. // Biomacromolecules. 2011. V. 12. P. 2114–2125. https://doi.org/10.1021/bm200201y
  115. Bao H., Li L., Gan L.H., Ping Y., Li J., Ravi P. // Macromolecules. 2010. V. 43. P. 5679–5687. https://doi.org/10.1021/ma100894p
  116. Heinze T., Schöbitz M., Pohl M., Meister F. // J. Polym. Sci. Part A Polym. Chem. 2008. V. 46. P. 3853–3859. https://doi.org/10.1002/pola.22697
  117. Kennedy D.C., Pezacki J.P., Pegoraro A.F., Legault M.C.B., Danielson D.C., McKay C.S., Blake J.A., Mester Z., Stolow A. // J. Am. Chem. Soc. 2011. V. 133. P. 17993. https://doi.org/10.1021/ja2083027
  118. Dehnert K.W., Baskin J.M., Laughlin S.T., Beahm B.J., Naidu N.N., Amacher S.L., Bertozzi C.R. // Chembiochem. 2012. V. 13. P. 353–357. https://doi.org/10.1002/cbic.201100649
  119. Schart V.F., Hassenrück J., Späte A.K., Dold J.E.G.A., Fahrner R., Wittmann V. // Chembiochem. 2019. V. 20. P. 166–171. https://doi.org/10.1002/cbic.201800740
  120. Lin F.L., Hoyt H.M., Van Halbeek H., Bergman R.G., Bertozzi C.R. // J. Am. Chem. Soc. 2005. V. 127. P. 2686–2695. https://doi.org/10.1021/ja044461m
  121. Laughlin S.T., Agard N.J., Baskin J.M., Carrico I.S., Chang P.V., Ganguli A.S., Hangauer M.J., Lo A., Prescher J.A., Bertozzi C.R. // Methods Enzymol. 2006. V. 415. P. 230–250. https://doi.org/10.1016/S0076-6879(06)15015-6
  122. Bertozzi C.R., Saxon E. // Science. 2000. V. 287. P. 2007–2010. https://doi.org/10.1126/science.287.5460.2007
  123. Saxon J.I.A., Saxon C.R.B.E. // Org. Lett. 2000. V. 2. P. 2141–2143. https://doi.org/10.1021/ol006054v
  124. Nilsson B.L., Kiessling L.L., Raines R.T. // Org. Lett. 2000. V. 2. P. 1939–1941. https://doi.org/10.1021/ol0060174
  125. Nilsson B.L., Kiessling L.L., Raines R.T. // Org. Lett. 2001. V. 3. P. 9–12. https://doi.org/10.1021/ol006739v
  126. Soellner M.B., Nilsson B.L., Raines R.T. // J. Org. Chem. 2002. V. 67. P. 4993–4996. https://doi.org/10.1021/jo025631l
  127. Hemmilä I. // J. Alloys Compd. 1995. V. 225. P. 480–485. https://doi.org/10.1016/0925-8388(94)07069-5
  128. Brechbiel M.W., Gansow O.A. // Bioconjug. Chem. 1991. V. 2. P. 187–194. https://doi.org/10.1021/bc00009a008
  129. Пугачев Д.Е., Осин Н.С., Васильев Н.В. // Вест. Моск. гос. областного ун-та. Сер. Естест. науки. 2017. № 3. С. 51–60. https://doi.org/10.18384/2310-7189-2017-3-51-60
  130. Brechbiel M.W., McMurry T.J., Gansow O.A. // Tetrahedron Lett. 1993. V. 34. P. 3691–3694. https://doi.org/10.1016/S0040-4039(00)79202-1
  131. Xiao Y., Xue R., You T., Li X., Pei F., Wang X., Lei H. // Carbohydr. Res. 2014. V. 395. P. 9–14. https://doi.org/10.1016/j.carres.2014.05.022
  132. Nghia N.T., Tinet E., Ettori D., Beilvert A., PavonDjavid G., Maire M., Ou P., Tualle J.-M., Chaubet F.J. // Biomed. Opt. 2021. V. 22. P. 76004. https://doi.org/10.1117/1.jbo.22.7.076004
  133. Ute R.-G., Markus G., Sara C.-J., Roland N., Thomas N. // Nat. Methods. 2008. V. 5. P. 763. https://doi.org/10.1038/nmeth.1248
  134. Thanh N.T.K., Green L.A.W. // Nano Today. 2010. V. 5. P. 213–230. https://doi.org/10.1016/j.nantod.2010.05.003
  135. Karakoti A.S., Shukla R., Shanker R., Singh S. // Adv. Colloid Interface Sci. 2015. V. 215. P. 28–45. https://doi.org/10.1016/j.cis.2014.11.004
  136. Zhang M., Bai L., Shang W., Xie W., Ma H., Fu Y., Fang D., Sun H., Fan L., Han M., Liu C., Yang S.J. // Mater. Chem. 2012. V. 22. P. 7461. https://doi.org/10.1039/c2jm16835a
  137. Yuan F., Li S., Fan Z., Meng X., Fan L., Yang S. // Nano Today. 2016. V. 11. P. 565–586. https://doi.org/10.1016/j.nantod.2016.08.006
  138. Fan Z., Zhou S., Garcia C., Fan L., Zhou J. // Nanoscale. 2017. V. 9. P. 4928–4933. https://doi.org/10.1039/c7nr00888k
  139. Nelson S.R., Ali M.Y., Warshaw D.M. // Methods Mol. Biol. 2011. V. 778. P. 111–121. https://doi.org/ 10.1007/978-1-61779-261-8_8
  140. Zanchet D., Micheel C.M., Parak W.J., Gerion D., Alivisatos A.P. // Nano Lett. 2001. V. 1. P. 32–35. https://doi.org/10.1021/nl005508e
  141. Zheng Z., Pan X., Xu J., Wu Z., Zhang Y., Wang K. // Int. J. Biol. Macromol. 2020. V. 163. P. 1403–1420. https://doi.org/10.1016/j.ijbiomac.2020.07.210

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Introduction of a fluorescent label to the aldehyde group (hereinafter, the green diamond is a fluorescent label): reducing polysaccharide (a), Schiff base (b), reduced Schiff base (c), hydrazone – reaction product with hydrazine (d), hydrazone – reaction product with hydrazide (d).

Download (147KB)
3. Fig. 2. Introduction of an amino group using a hydroxylamine derivative using the disaccharide N-acetyllactosamine as an example.

Download (120KB)
4. Fig. 3. Introduction of a fluorescent label at the hydroxyl group: reaction with isocyanates (a), isothiocyanates (b), dichlorodiazine (c) and vinyl sulfone (d).

Download (221KB)
5. Fig. 4. Introduction of a fluorescent label at the amino group: reaction with succinimide ester (a), sulfochloride (b) and isothiocyanate (c).

Download (169KB)
6. Fig. 5. Introduction of a fluorescent label at the carboxyl group: by activation with carbodiimide (a), reaction with diazomethane (b).

Download (116KB)
7. Fig. 6. Labeling using azide-alkyne cycloaddition.

Download (54KB)
8. Fig. 7. Introduction of functional groups for click reaction using carbonyldiimidazole: (a) – synthesis of propargyl carbonate dextran, (b) – synthesis of azidopropyl carbonate dextran.

Download (140KB)
9. Fig. 8. Preparation of cellulose with an azide group using 1-azido-2,3-epoxypropane.

Download (63KB)
10. Fig. 9. Scheme of photoclick reaction with tetrazole.

Download (79KB)
11. Fig. 10. Staudinger reaction: (a) – Staudinger ligation, (b) – traceless ligation according to Staudinger.

Download (283KB)
12. Fig. 11. Bifunctional ligands for lanthanide labels: isothiocyanatophenylethylenediaminetetraacetic acid (EDTA) [126, 127] (a), isothiocyanatobenzyldiethylenetriaminetetraacetic acid (DTTA) [126, 127] (b), isothiocyanatobenzyldiethylenetriaminepentaacetic acid (DTPA) [126–128] (c), isothiocyanatobenzyltetraazacislododecaneacetic acid (DOTA) [126, 129] (d), isothiocyanatobenzyltetraazacislotetradecaneacetic acid (TETA) [126, 129] (d), isothiocyanatobenzyltriazacislononacetic acid (NOTA) [129] (e), dichlorotriazinoaminobenzyl diethylenetriaminetetraacetic acid (DTTA) [128] (f).

Download (234KB)

Copyright (c) 2024 Russian Academy of Sciences