Structural and functional features of protein-polysaccharide complexes based on cysteine proteases and hydrophilicly modified chitosan

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, complexes of cysteine proteases, namely bromelain, papain and ficin, with a graft copolymer of chitosan and poly(N,N-dimethyl amino ethyl methacrylate) were obtained. It was determined that the enzyme catalytic activity in the complexes is reduced compared to their native forms. The results of molecular docking showed that modified polysaccharide located in the catalytic pocket of cysteine proteases globules. The resulting complexes have increased stability when stored under physiological conditions, which makes them promising candidates for use in the development of treatments for wounds.

全文:

受限制的访问

作者简介

M. Lavlinskaya

Voronezh State University

Email: holyavka@rambler.ru
俄罗斯联邦, Universitetskaya Ploshchad 1, Voronezh, 394018

A. Sorokin

Voronezh State University

Email: holyavka@rambler.ru
俄罗斯联邦, Universitetskaya Ploshchad 1, Voronezh, 394018

S. Goncharova

Voronezh State University

Email: holyavka@rambler.ru
俄罗斯联邦, Universitetskaya Ploshchad 1, Voronezh, 394018

M. Holyavka

Voronezh State University; Sevastopol State University

编辑信件的主要联系方式.
Email: holyavka@rambler.ru
俄罗斯联邦, Universitetskaya Ploshchad 1, Voronezh, 394018; Universitetskaya ul. 33, Sevastopol, 299053

M. Kondratyev

Voronezh State University; Institute of Cell Biophysics of the RAS

Email: holyavka@rambler.ru
俄罗斯联邦, Universitetskaya Ploshchad 1, Voronezh, 394018; Institutskaya ul. 3, Pushchino, 142290

V. Artyukhov

Voronezh State University

Email: holyavka@rambler.ru
俄罗斯联邦, Universitetskaya Ploshchad 1, Voronezh, 394018

参考

  1. Sharaf A., Muthayya P. // Burns. 2022. V. 48. P. 1618– 1625. https://doi.org/10.1016/j.burns.2021.12.004
  2. Wen J., Johnson K., O’Boyle C. // Burns. 2022. V. 48. P. 1706–1709. https://doi.org/10.1016/j.burns.2022.02.008
  3. Kusumasari C., Abdou A., Nakajima M., Tagami J. // J. Dent. 2021. V. 109. P. 103665. https://doi.org/10.1016/j.jdent.2021.103665
  4. Maashi M.S., Elkhodary H.M., Alamoudi N.M., Bamashmous N.O. // Saudi Dent. J. 2023. V. 35. P. 233–243. https://doi.org/10.1016/j.sdentj.2023.01.010
  5. Baidamshina D.R., Koroleva V.A., Trizina E. Yu., Pankova S.M., Agafonova M.N., Chirkova M.N., Vasileva O.S., Akhmetov N., Shubina V.V., Porfiryev A.G., Semenova E.V., Sachenkov O.A., Bogachev M.I., Artyukhov V.G., Baltina T.V., Holyavka M.G., Kayumov A.R. // Int. J. Biol. Macromol. 2020. V. 164. P. 4205–4217. https://doi.org/10.1016/j.ijbiomac.2020.09.030
  6. Holyavka M.G., Goncharova S.S., Sorokin A.V., Lavlinskaya M.S., Redko Y.A., Faizullin D.A., Baidamshina D.R., Zuev Y.F., Kondratyev M.S., Kayumov A.R., Artyukhov V.G. // Polymers. 2022. V. 14. P. 5110. https://doi.org/10.3390/polym14235110
  7. dos Anjos M.M., da Silva A.A., de Pascoli I.C., Graton Mikcha J.M., Machinski M., Peralta R.M., de Abreu Filho B.A. // Int. J. Food Microbiol. 2016. V. 216. P. 121–126. https://doi.org/10.1016/j.ijfoodmicro.2015.10.007
  8. Hasannasab M., Nourmohammadi J., Dehghan M.M., Ghaee A. // Int. J. Pharm. 2021. V. 610. P. 121227. https://doi.org/10.1016/j.ijpharm.2021.121227
  9. Fernandez-Lucas J., Castaneda D., Hormigo D. // Trends Food Sci. Technol. 2017. V. 68. P. 91–101. https://doi.org/10.1016/j.tifs.2017.08.017
  10. Liu H., Wang C., Zou S., Wei Z., Tong Z. // Langmuir. 2012. V. 28. P. 11017–11024. https://doi.org/10.1021/la3021113
  11. Bhattacharya A., Misra B.N. // Progress Polym. Sci. 2004. V. 2009. P. 767–814. https://doi.org/10.1016/j.progpolymsci.2004.05.00
  12. Messina M., Bhattacharya A., Montgomery H., Maynard H. // Progress Polym. Sci. 2020. V. 100. P. 10186. https://doi.org/10.1016/j.progpolymsci.2019.101186
  13. Sorokin A.V., Kuznetsov V.A., Lavlinskaya M.S. // Polymer Bulletin. 2021. V. 78. P. 2975–2992. https://doi.org/10.1007/s00289-020-03250-z
  14. Kuznetsov V.A., Sorokin A.V., Lavlinskaya M.S., Sinelnikov A.A., Bykovskiy D.V. // Polymer Bulletin. 2019. V. 76. P. 4929–4949. https://doi.org/10.1007/s00289-018-2635-0
  15. Shatalov G.V., Lavlinskaya M.S., Pakhomova O.A., Mokshina N.Ya., Kuznetsov V.A. // Russ. J. Appl. Chem. 2016. V. 89. P. 140–146. https://doi.org/10.1134/S1070427216010225
  16. Kuznetsov V.A., Lavlinskaya M.S., Ostankova I.V., Shatalov G.V., Shikhaliev Kh.S., Ryzhkova E.A. // Polymer Bulletin. 2018. V. 75. P. 1237–1251. https://doi.org/10.1007/s00289-017-2091-2
  17. Beveridge A.J. // Protein Sci. 1996. V. 5. P. 1355–1365. https://doi.org/10.1002/pro.5560050714
  18. Handbook of Proteolytic Enzymes. 3rd Edn. / Eds. Rawlings N.D., Salvesen G. New York: Acad. Press, 2013. 3932 p.
  19. Sorokin A.V., Olshannikova S.S., Lavlinskaya M.S., Holyavka M.G., Faizullin, D.A., Zuev Y.F., Artukhov V.G. // Polymers. 2022. V. 14. P. 2279. https://doi.org/10.3390/polym14112279
  20. Lowry О.H., Rosebrough N.J., Faar A.L., Randall R.J. // J. Biol. Chem. 1951. V. 193. P. 265–275.
  21. Sorokin A.V., Goncharova S.S., Lavlinskaya M.S., Holyavka M.G., Faizullin, D.A., Zuev Y.F., Kondratyev M.S., Artyukhov V.G. // Int. J. Mol. Sci. 2023. V. 24. P. 11246. https://doi.org/10.3390/ijms241411246
  22. Sorokin A.V., Goncharova S.S., Lavlinskaya M.S., Holyavka M.G., Faizullin D.A., Kondratyev M.S., Kannykin S.V., Zuev Y.F. Artyukhov V.G. // Polymers. 2023. V. 15. P. 649. https://doi.org/10.3390/polym15030649
  23. Sabirova A.R., Rudakova N.L., Balaban N.P., Ilyinskaya O.N., Demidyuk I.V., Kostrov S.V., Rudenskaya G.N., Sharipova M.R. // FEBS Lett. 2010. V. 584. P. 4419–4425. https://doi.org/10.1016/j.febslet.2010.09.049
  24. Абдуллатыпов А.В., Кондратьев М.С., Холявка М.Г., Артюхов В.Г. // Биофизика. 2016. Т. 61. № 4. С. 669– 676.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. The process of formation of the target product – a graft copolymer of chitosan and poly-N,N-dimethylaminoethyl methacrylate.

下载 (107KB)
3. Fig. 1. Protein content (mg/g carrier) in complexes of bromelain, papain and ficin with grafted copolymer of chitosan and poly-N,N-dimethylaminoethyl methacrylate. The yield of complex formation for protein is indicated, expressed as a percentage of the sorbed enzyme from its amount in the solution during the interaction, taken as 100%.

下载 (47KB)
4. Fig. 2. Total catalytic activity (units/ml of solution) of bromelain, papain and ficin complexes with a grafted copolymer of chitosan and poly-N,N-dimethylaminoethyl methacrylate. The efficiency of enzyme complexation (by total catalytic activity) is also indicated, expressed as a percentage of the retention of the proteolytic activity of the enzyme after immobilization in relation to the enzyme activity in solution, taken as 100%.

下载 (52KB)
5. Fig. 3. Topology of the complexes of bromelain (a), papain (b), and ficin (c) with a grafted copolymer of chitosan and poly-N,N-dimethylaminoethyl methacrylate calculated by the flexible molecular docking method. A fragment of the grafted copolymer of chitosan and poly-N,N-dimethylaminoethyl methacrylate molecule is shown in pink. The α-helical fragments of the enzyme molecule, which are predominantly part of the L-domain, are shown in turquoise. The β-pleated regions, which predominate in the R-domain, are shown in red. A depression (catalytic pocket) containing the active center of the enzyme is formed at the junction of the L- and R-domains.

下载 (201KB)
6. Fig. 4. Bonds and interactions between bromelain (a), papain (b), and ficin (c) and the graft copolymer of chitosan and poly-N,N-dimethylaminoethyl methacrylate (dashed lines indicate hydrogen bonds, bond lengths are given in angstroms). Catalytically significant residues are shown in bold.

下载 (304KB)
7. Fig. 5. Residual catalytic activity of enzymes after incubation of samples at 37°C: in units/ml of solution (a) and as a percentage of the initial level (b). The legend for both diagrams is given in Fig. 5a.

下载 (236KB)

版权所有 © Russian Academy of Sciences, 2024