Features of the amino acid composition of gelatins from organs and tissues of a number of farm animals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Gelatins are formed during technological stages of processing animal connective tissue proteins (primarily – collagens) and, from a biochemical point of view, are represented as various polypeptide products. In most cases, gelatins as commercial products are 52.5% made from the skin and bones of cattle; 46.0% – from pig skin and only 1.5% – using other animals. At the beginning of the 21st century, the bulk of gelatins produced are used in food products, about a third in the medical sector, and only about 6% in technical or other industrial applications. Currently, trends towards a healthy lifestyle have intensified, which, along with the religious and cultural traditions of many countries, encourages scientists to look for sources of gelatins that are not related to mammals, but are close to them in physicochemical and functional characteristics. Therefore, recently there has been a tendency that the gigantic volume of production of gelatins from mammals (cattle and pigs) is beginning to decline, although not significantly so far, compared with the relative increase in the production of gelatins from by-products and waste from industrial poultry farming. Moreover, over the past decades, global poultry meat production has increased by more than a third. The optimal content of amino acids (AA) and their ratios in gelatins from cattle and pig skin for their further use is shown. Of course, the AA content in gelatins from pig and cattle skin obtained under different technological conditions may differ significantly. However, in general, these differences are not critical and therefore, sometimes gelatins are obtained from a mixture of animal waste. Recently, in Russia, a composition of protein ingredients from hydrolysates of pig and cattle skin with the addition of dried blood plasma was proposed, which had a significantly better AA composition than in traditional gelatins, which allowed the authors to assume increased biological and nutritional value of the developed product. In addition, a number of authors have discovered an improvement in a number of indicators and biological properties of gelatins from a mixture of animal waste with the formation of a number of specific peptides. Thus, new compositions based on known gelatins with an optimal AA composition are currently being actively developed, leading to improved nutritional and functional properties. The fundamental and applied significance of this review lies in a detailed description of the main studies on the amino acid composition of gelatins and identifying their relationship with the key biochemical and technological indicators of gelatin-based materials.

Full Text

Restricted Access

About the authors

S. Y. Zaitsev

Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst

Author for correspondence.
Email: s.y.zaitsev@mail.ru
Russian Federation, Dubrovitsy 60, Podolsk, 142132

References

  1. Овчинников Ю.А. // Биоорганическая химия / Ред. Овчинников Ю.А. Москва: Просвещение, 1987. С. 27–91.
  2. Kaur J., Rangra N.K., Chawla P.A. // Sep. Sci. Plus. 2023. V. 6. P. e2300040. https://doi.org/10.1002/sscp.202300040
  3. Нестеров С.В., Ягужинский Л.С., Подопригора Г.И., Нарциссов Я.Р. // Биохимия. 2020. T. 85. C. 459– 475. https://doi.org/10.31857/S0320972520040016
  4. Tsetlin V.I. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 224–228. https://doi.org/10.31857/S0132342323030235
  5. Hou Y., Yin Y., Wu G. // Exp. Biol. Med. 2015. V. 240. P. 997–1007. https://doi.org/10.1177/1535370215587913
  6. Zaitsev S.Yu., Kolesnik N.S., Bogolyubova N.V. // Molecules. 2022. V. 27. P. 2278. https://doi.org/10.3390/molecules27072278
  7. Zaitsev S.Yu., Belous A.A., Voronina O.A., Savina A.A., Rykov R.A., Bogolyubova N.V. // Animals. 2021. V. 11. P. 2400. https://doi.org/10.3390/ani11082400
  8. Karim A.A., Bhat R. // Trends Food Sci. Technol. 2008. V. 19. P. 644–656. https://doi.org/10.1016/j.tifs.2008.08.001
  9. Alipal J., Pu’ad N.M., Lee T.C., Nayan N.H.M., Sahari N., Basri H., Idris M.I., Abdullah H.Z. // Materials Today: Proceedings. 2021. V. 42. P. 240–250. https://doi.org/10.1016/j.matpr.2020.12.922
  10. Global Food Gelatin Market Industry. Growth, Share, Size, Forecast. 2019–2027. https://www.inkwoodresearch.com/reports/global-food-gelatinmarket/#report-summary (accessed February 27, 2024).
  11. Liu D., Nikoo M., Boran G., Zhou P., Regenstein J.M. // Ann. Rev. Food Sci. Technol. 2015. V. 6. P. 527–557. https://doi.org/10.1146/annurev-food-031414-111800
  12. Зайцев С.Ю. // Ветеринария, зоотехния и биотехнология. 2023. № 6. С. 119–129. https://doi.org/10.36871/vet.zoo.bio.202306015
  13. Bello A.B., Kim D., Kim D., Park H., Lee S.-H. // Tissue Eng. Part B Rev. 2020. V. 26. P. 164–180. https://doi.org/10.1089/ten.teb.2019.0256
  14. Abedinia A., Nafchi A.M., Sharifi M., Ghalambor P., Oladzadabbasabadi N., Ariffin F., Huda N. // Trends Food Sci. Technol. 2020. V. 104. P. 14–26. https://doi.org/10.1016/j.tifs.2020.08.001
  15. Rather J.A., Akhter N., Ashraf Q.S., Mir S.A., Makroo H.A., Majid D., Barba F.J., Khaneghah A.M., Dar B.N. // Food Packaging and Shelf Life. 2022. V. 34. P. 100945. https://doi.org/10.1016/j.fpsl.2022.100945
  16. Saito M., Takenouchi Y., Kunisaki N., Kimura S. // Eur. J. Biochem. 2001. V. 268. P. 2817–2827. https://doi.org/10.1046/j.1432-1327.2001.02160.x
  17. Liu Z.Y., Oliveira A.C.M., Su Y.C. // J. Agric. Food Chem. 2010. V. 58. P. 1270–1274. https://doi.org/10.1021/jf9032415
  18. Bae I., Osatomi K., Yoshida A., Osako K., Yamaguchi A., Hara K. // Food Chem. 2008. V. 108. P. 49–54. https://doi.org/10.1016/j.foodchem.2007.10.039
  19. Зайцев С.Ю., Боголюбова Н.В., Молянова Г.В. // Биохимический анализ крови ряда пород свиней и их гибридов / Ред. Зайцев С.Ю. Москва: Сельскохозяйственные технологи, 2022. С. 162–256.
  20. Джафаров А.Ф. // Производство желатина. Агропромиздат: Москва, 1990. 287 c.
  21. Mariod A.A., Adam H.F. // Acta Sci. Pol. Technol. Aliment. 2013. V. 12. P. 135–147.
  22. Gimenez B., Turnay J., Lizarbe M.A., Montero P., Gómez-Guillén M.C. // J. Food Hydrocoll. 2005. V. 19. P. 941–950. https://doi.org/10.1016/j.foodhyd.2004.09.011
  23. Jusila J. // J. Forensic Sci. Int. 2004. V. 141. P. 91–98. https://doi.org/10.1016/j.forsciint.2003.11.036
  24. Nishimoto M., Sakamoto R., Mizuta S., Yoshinaka R. // J. Food Chem. 2005. V. 90. P. 151–156. https://doi.org/10.1016/j.foodchem.2004.03.034
  25. Johnston-Banks F.A. // Gelatine. In: Food Gels / Ed. Harris P. Elsevier Applied Food Science Series. Dordrecht: Springer, 1990. P. 233–289. https://doi.org/10.1007/978-94-009-0755-3_7
  26. Mariod A.A., Bushra M., Abdel-Wahab S.I., Ain N.M. // Int. J. Trop. Insect. 2011. V. 31. P. 145–153. https://doi.org/10.1017/S1742758411000282
  27. Mariod A.A., Abdel-Wahab S.I., Ibrahim M.Y., Mohan S., Abd Elgadir M., Ain N.M. // J. Food Sci. Eng. 2011. V. 1. P. 45–55.
  28. Cole C.G.B. // In: Encyclopedia of Food Science and Technology. 2000. V. 4. P. 1183–1188.
  29. Cole C.G.B., McGill A.E.G. // Int. J. Food Sci. Technol. 1988. V. 23. P. 525–529. https://doi.org/10.1111/j.1365-2621.1988.tb00610.x
  30. Sims J.T., Bailey A.J. // J. Chromat. 1992. V. 582. P. 49–55. https://doi.org/10.1016/0378-4347(92)80301-6
  31. Zhou P., Mulvaney S.J., Regenstein J.M. // J. Food Sci. 2006. V. 71. P. C313–C332. https://doi.org/10.1111/j.1750-3841.2006.00151.x
  32. Zhou P., Regenstein J.M. // J. Food Sci. 2005. V. 70. P. 392–396. https://doi.org/10.1111/j.1365-2621.2005.tb11435.x
  33. Acevedoa C.A., Díaz-Calderónb P., Lópezcand D., Enrione J. // CyTA–Journal of Food. 2015. V. 13. P. 227–234. https://doi.org/10.1080/19476337.2014.944570
  34. Karim A.A., Bhat R. // Food Hydrocoll. 2009. V. 23. P. 563–576. https://doi.org/10.1016/j.foodhyd.2008.07.002
  35. Simon A., Grohens Y., Vandanjon L., Bourseau P., Balnois E., Levesque G. // Macromol. Symp. 2003. V. 203. P. 331–338. https://doi.org/10.1002/masy.200351337
  36. Morimura S., Nagata H., Uemura Y., Fahmi A., Shigematsu T., Kida K. // J. Proc. Biochem. 2002. V. 37. P. 1403–1412. https://doi.org/10.1016/S0032-9592(02)00024-9
  37. Paul C., Leser S., Oesser S. // Nutrients. 2019. V. 11. P. 1079. https://doi.org/10.3390/nu11051079
  38. Ross-Murphy S.B. // Imaging Sci. J. 1997. V. 45. P. 205–209. https://doi.org/10.1080/13682199.1997.11736407
  39. Jamilah B., Harvinder K.G. // Food Chem. 2002. V. 77. P. 81–84. https://doi.org/10.1016/S0308-8146(01)00328-4
  40. Зайцев С.Ю. // Вест. Моск. ун-та. Сер. 2: Химия. 2023. Т. 64. С. 490–499. https://doi.org/10.55959/MSU0579-9384-2-2023-64-5-490-499
  41. Gómez-Guillén M.C., Montero P. // J. Food Sci. 2001. V. 66. P. 213–216.
  42. Gómez-Guillén M.C., Ihl M., Bifani V., Silva A., Montero P. // Food Hydrocoll. 2007. V. 21. P. 1133– 1143. https://doi.org/10.1016/j.foodhyd.2006.08.006
  43. Gómez-Guillén M.C., Turnay J., Fernandez-Diaz M.D., Ulmo N., Lizarbe M.A., Montero P. // J. Food Hydrocoll. 2002. V. 16. P. 25–34. https://doi.org/10.1016/S0268-005X(01)00035-2
  44. Nurilmala M., Suryamarevita H., Hizbullah H.H., Jacoeb A.M., Ochiai Y. // Saudi J. Biol. Sci. 2022. V. 29. P. 1100–1110. https://doi.org/10.1016/j.sjbs.2021.09.056
  45. Gomez-Estaca J., Lopez de Lacey A., Gomez-Guillen M.C., Lopez-Caballero M.E., Montero P. // J. Aquatic Food Product Technol. 2009. V. 18. P. 46–52. https://doi.org/10.1080/10498850802581252
  46. Eastoe J.E. // Biochem. J. 1955. V. 61. P. 589–600. https://doi.org/10.1042/bj0610589
  47. Ahmad T., Ismail A., Ahmad S.A., Abdul Khalil K., Awad E.A., Akhtar M.T., Sazili A.Q. // Polymers (Basel). 2021. V. 13. P. 1554. https://doi.org/10.3390/polym13101554
  48. Ahmad A., Ismail A., Ahmad S.A., Khalil K.A., Kee L.T., Awad E.A., Sazili A.Q. // J. Food Sci. Technol. 2020. V. 57. P. 3772–3781. https://doi.org/10.1007/s13197-020-04409-2
  49. Ahmad T., Ismail A., Ahmad S.A., Khalil K A., Kee L.T., Awad E.A., Sazili A.Q., Ahmad A. // Int. J. Food Prop. 2019. V. 22. P. 138–153. https://doi.org/10.1080/10942912.2019.1576731
  50. He L., Gao Y., Wang X., Han L., Yu Q., Shi H., Song R. // Ultrasonics Sonochemistry. 2021. V. 78. P. 105738. https://doi.org/10.1016/j.ultsonch.2021.105738
  51. Zou Y., Wang W., Li Q., Chen Y., Zheng D., Zou Y., Zhang M., Zhao T., Mao G., Feng W., Wu X., Yang L. // Process. Biochem. 2016. V. 51. P. 431–443. https://doi.org/10.1016/j.procbio.2015.12.011
  52. Rajapakse N., Mendis E., Jung W.K., Je J.Y., Kim S.K. // Food Res. Int. 2005. V. 38. P. 175–182. https://doi.org/10.1016/j.foodres.2004.10.002
  53. Mulyani S., Setyabudi F.M.S., Pranoto Y., Santoso U. // Korean J. Food Sci. Anim. Resour. 2017. V. 37. P. 708– 715. https://doi.org/10.5851/kosfa.2017.37.5.708
  54. Aykın-Dinçer E., Koç A., Erbas M. // Poult. Sci. 2017. V. 96. P. 4124–4131. https://doi.org/10.3382/ps/pex237
  55. Al-Hassan A.A. // Food Hydrocoll. 2020. V. 101. P. 105457. https://doi.org/10.1016/j.foodhyd.2019.105457
  56. Cao S., Wang Y., Xing L., Zhang W., Zhou G. // Food and Bioproducts Processing. 2020. V. 121. P. 213–223. https://doi.org/10.1016/j.fbp.2020.03.001
  57. Hafidz R.M.R.N., Yaakob C.M., Amin I., Noorfaizan A. // Int. Food Res. J. 2011. V. 18. P. 787–791.
  58. Norizah M.S., Badii F., Howell N.K. // Food Hydrocolloids. 2013. V. 30. P. 143–151. https://doi.org/10.1016/j.foodhyd.2012.05.009
  59. Eastoe J.E., Leach A.A. // Chemical Constitution of Gelatin. In: The Science and Technology of Gelatin // Eds. Ward A.G., Courts A. London: Academic Press, 1977. P. 73–107.
  60. Chen L., Ma L., Zhou M., Liu Y., Zhang Y. // Food Hydrocol. 2014. V. 36. P. 316–322. https://doi.org/10.1016/j.foodhyd.2013.10.012
  61. Kremenevskaya M.I., Dobryagin R.V., Bogomolov V.V., Snarkiy S.I. // Theory and Practice of Meat Processing. 2019. V. 4. Р. 20–26. https://doi.org/10.21323/2414-438X-2019-4-2-20-26
  62. Abedinia A., Ariffin F., Huda N., Nafchi A.М. // Int. J. Biol. Macromol. 2017. V. 98. Р. 586–594. https://doi.org/10.1016/j.ijbiomac.2017.01.139

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences