Features of the amino acid composition of gelatins from organs and tissues of a number of farm animals
- Authors: Zaitsev S.Y.1
-
Affiliations:
- Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst
- Issue: Vol 50, No 5 (2024)
- Pages: 577-590
- Section: Articles
- URL: https://archivog.com/0132-3423/article/view/670784
- DOI: https://doi.org/10.31857/S0132342324050018
- EDN: https://elibrary.ru/LSGJXZ
- ID: 670784
Cite item
Abstract
Gelatins are formed during technological stages of processing animal connective tissue proteins (primarily – collagens) and, from a biochemical point of view, are represented as various polypeptide products. In most cases, gelatins as commercial products are 52.5% made from the skin and bones of cattle; 46.0% – from pig skin and only 1.5% – using other animals. At the beginning of the 21st century, the bulk of gelatins produced are used in food products, about a third in the medical sector, and only about 6% in technical or other industrial applications. Currently, trends towards a healthy lifestyle have intensified, which, along with the religious and cultural traditions of many countries, encourages scientists to look for sources of gelatins that are not related to mammals, but are close to them in physicochemical and functional characteristics. Therefore, recently there has been a tendency that the gigantic volume of production of gelatins from mammals (cattle and pigs) is beginning to decline, although not significantly so far, compared with the relative increase in the production of gelatins from by-products and waste from industrial poultry farming. Moreover, over the past decades, global poultry meat production has increased by more than a third. The optimal content of amino acids (AA) and their ratios in gelatins from cattle and pig skin for their further use is shown. Of course, the AA content in gelatins from pig and cattle skin obtained under different technological conditions may differ significantly. However, in general, these differences are not critical and therefore, sometimes gelatins are obtained from a mixture of animal waste. Recently, in Russia, a composition of protein ingredients from hydrolysates of pig and cattle skin with the addition of dried blood plasma was proposed, which had a significantly better AA composition than in traditional gelatins, which allowed the authors to assume increased biological and nutritional value of the developed product. In addition, a number of authors have discovered an improvement in a number of indicators and biological properties of gelatins from a mixture of animal waste with the formation of a number of specific peptides. Thus, new compositions based on known gelatins with an optimal AA composition are currently being actively developed, leading to improved nutritional and functional properties. The fundamental and applied significance of this review lies in a detailed description of the main studies on the amino acid composition of gelatins and identifying their relationship with the key biochemical and technological indicators of gelatin-based materials.
Full Text

About the authors
S. Y. Zaitsev
Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst
Author for correspondence.
Email: s.y.zaitsev@mail.ru
Russian Federation, Dubrovitsy 60, Podolsk, 142132
References
- Овчинников Ю.А. // Биоорганическая химия / Ред. Овчинников Ю.А. Москва: Просвещение, 1987. С. 27–91.
- Kaur J., Rangra N.K., Chawla P.A. // Sep. Sci. Plus. 2023. V. 6. P. e2300040. https://doi.org/10.1002/sscp.202300040
- Нестеров С.В., Ягужинский Л.С., Подопригора Г.И., Нарциссов Я.Р. // Биохимия. 2020. T. 85. C. 459– 475. https://doi.org/10.31857/S0320972520040016
- Tsetlin V.I. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 224–228. https://doi.org/10.31857/S0132342323030235
- Hou Y., Yin Y., Wu G. // Exp. Biol. Med. 2015. V. 240. P. 997–1007. https://doi.org/10.1177/1535370215587913
- Zaitsev S.Yu., Kolesnik N.S., Bogolyubova N.V. // Molecules. 2022. V. 27. P. 2278. https://doi.org/10.3390/molecules27072278
- Zaitsev S.Yu., Belous A.A., Voronina O.A., Savina A.A., Rykov R.A., Bogolyubova N.V. // Animals. 2021. V. 11. P. 2400. https://doi.org/10.3390/ani11082400
- Karim A.A., Bhat R. // Trends Food Sci. Technol. 2008. V. 19. P. 644–656. https://doi.org/10.1016/j.tifs.2008.08.001
- Alipal J., Pu’ad N.M., Lee T.C., Nayan N.H.M., Sahari N., Basri H., Idris M.I., Abdullah H.Z. // Materials Today: Proceedings. 2021. V. 42. P. 240–250. https://doi.org/10.1016/j.matpr.2020.12.922
- Global Food Gelatin Market Industry. Growth, Share, Size, Forecast. 2019–2027. https://www.inkwoodresearch.com/reports/global-food-gelatinmarket/#report-summary (accessed February 27, 2024).
- Liu D., Nikoo M., Boran G., Zhou P., Regenstein J.M. // Ann. Rev. Food Sci. Technol. 2015. V. 6. P. 527–557. https://doi.org/10.1146/annurev-food-031414-111800
- Зайцев С.Ю. // Ветеринария, зоотехния и биотехнология. 2023. № 6. С. 119–129. https://doi.org/10.36871/vet.zoo.bio.202306015
- Bello A.B., Kim D., Kim D., Park H., Lee S.-H. // Tissue Eng. Part B Rev. 2020. V. 26. P. 164–180. https://doi.org/10.1089/ten.teb.2019.0256
- Abedinia A., Nafchi A.M., Sharifi M., Ghalambor P., Oladzadabbasabadi N., Ariffin F., Huda N. // Trends Food Sci. Technol. 2020. V. 104. P. 14–26. https://doi.org/10.1016/j.tifs.2020.08.001
- Rather J.A., Akhter N., Ashraf Q.S., Mir S.A., Makroo H.A., Majid D., Barba F.J., Khaneghah A.M., Dar B.N. // Food Packaging and Shelf Life. 2022. V. 34. P. 100945. https://doi.org/10.1016/j.fpsl.2022.100945
- Saito M., Takenouchi Y., Kunisaki N., Kimura S. // Eur. J. Biochem. 2001. V. 268. P. 2817–2827. https://doi.org/10.1046/j.1432-1327.2001.02160.x
- Liu Z.Y., Oliveira A.C.M., Su Y.C. // J. Agric. Food Chem. 2010. V. 58. P. 1270–1274. https://doi.org/10.1021/jf9032415
- Bae I., Osatomi K., Yoshida A., Osako K., Yamaguchi A., Hara K. // Food Chem. 2008. V. 108. P. 49–54. https://doi.org/10.1016/j.foodchem.2007.10.039
- Зайцев С.Ю., Боголюбова Н.В., Молянова Г.В. // Биохимический анализ крови ряда пород свиней и их гибридов / Ред. Зайцев С.Ю. Москва: Сельскохозяйственные технологи, 2022. С. 162–256.
- Джафаров А.Ф. // Производство желатина. Агропромиздат: Москва, 1990. 287 c.
- Mariod A.A., Adam H.F. // Acta Sci. Pol. Technol. Aliment. 2013. V. 12. P. 135–147.
- Gimenez B., Turnay J., Lizarbe M.A., Montero P., Gómez-Guillén M.C. // J. Food Hydrocoll. 2005. V. 19. P. 941–950. https://doi.org/10.1016/j.foodhyd.2004.09.011
- Jusila J. // J. Forensic Sci. Int. 2004. V. 141. P. 91–98. https://doi.org/10.1016/j.forsciint.2003.11.036
- Nishimoto M., Sakamoto R., Mizuta S., Yoshinaka R. // J. Food Chem. 2005. V. 90. P. 151–156. https://doi.org/10.1016/j.foodchem.2004.03.034
- Johnston-Banks F.A. // Gelatine. In: Food Gels / Ed. Harris P. Elsevier Applied Food Science Series. Dordrecht: Springer, 1990. P. 233–289. https://doi.org/10.1007/978-94-009-0755-3_7
- Mariod A.A., Bushra M., Abdel-Wahab S.I., Ain N.M. // Int. J. Trop. Insect. 2011. V. 31. P. 145–153. https://doi.org/10.1017/S1742758411000282
- Mariod A.A., Abdel-Wahab S.I., Ibrahim M.Y., Mohan S., Abd Elgadir M., Ain N.M. // J. Food Sci. Eng. 2011. V. 1. P. 45–55.
- Cole C.G.B. // In: Encyclopedia of Food Science and Technology. 2000. V. 4. P. 1183–1188.
- Cole C.G.B., McGill A.E.G. // Int. J. Food Sci. Technol. 1988. V. 23. P. 525–529. https://doi.org/10.1111/j.1365-2621.1988.tb00610.x
- Sims J.T., Bailey A.J. // J. Chromat. 1992. V. 582. P. 49–55. https://doi.org/10.1016/0378-4347(92)80301-6
- Zhou P., Mulvaney S.J., Regenstein J.M. // J. Food Sci. 2006. V. 71. P. C313–C332. https://doi.org/10.1111/j.1750-3841.2006.00151.x
- Zhou P., Regenstein J.M. // J. Food Sci. 2005. V. 70. P. 392–396. https://doi.org/10.1111/j.1365-2621.2005.tb11435.x
- Acevedoa C.A., Díaz-Calderónb P., Lópezcand D., Enrione J. // CyTA–Journal of Food. 2015. V. 13. P. 227–234. https://doi.org/10.1080/19476337.2014.944570
- Karim A.A., Bhat R. // Food Hydrocoll. 2009. V. 23. P. 563–576. https://doi.org/10.1016/j.foodhyd.2008.07.002
- Simon A., Grohens Y., Vandanjon L., Bourseau P., Balnois E., Levesque G. // Macromol. Symp. 2003. V. 203. P. 331–338. https://doi.org/10.1002/masy.200351337
- Morimura S., Nagata H., Uemura Y., Fahmi A., Shigematsu T., Kida K. // J. Proc. Biochem. 2002. V. 37. P. 1403–1412. https://doi.org/10.1016/S0032-9592(02)00024-9
- Paul C., Leser S., Oesser S. // Nutrients. 2019. V. 11. P. 1079. https://doi.org/10.3390/nu11051079
- Ross-Murphy S.B. // Imaging Sci. J. 1997. V. 45. P. 205–209. https://doi.org/10.1080/13682199.1997.11736407
- Jamilah B., Harvinder K.G. // Food Chem. 2002. V. 77. P. 81–84. https://doi.org/10.1016/S0308-8146(01)00328-4
- Зайцев С.Ю. // Вест. Моск. ун-та. Сер. 2: Химия. 2023. Т. 64. С. 490–499. https://doi.org/10.55959/MSU0579-9384-2-2023-64-5-490-499
- Gómez-Guillén M.C., Montero P. // J. Food Sci. 2001. V. 66. P. 213–216.
- Gómez-Guillén M.C., Ihl M., Bifani V., Silva A., Montero P. // Food Hydrocoll. 2007. V. 21. P. 1133– 1143. https://doi.org/10.1016/j.foodhyd.2006.08.006
- Gómez-Guillén M.C., Turnay J., Fernandez-Diaz M.D., Ulmo N., Lizarbe M.A., Montero P. // J. Food Hydrocoll. 2002. V. 16. P. 25–34. https://doi.org/10.1016/S0268-005X(01)00035-2
- Nurilmala M., Suryamarevita H., Hizbullah H.H., Jacoeb A.M., Ochiai Y. // Saudi J. Biol. Sci. 2022. V. 29. P. 1100–1110. https://doi.org/10.1016/j.sjbs.2021.09.056
- Gomez-Estaca J., Lopez de Lacey A., Gomez-Guillen M.C., Lopez-Caballero M.E., Montero P. // J. Aquatic Food Product Technol. 2009. V. 18. P. 46–52. https://doi.org/10.1080/10498850802581252
- Eastoe J.E. // Biochem. J. 1955. V. 61. P. 589–600. https://doi.org/10.1042/bj0610589
- Ahmad T., Ismail A., Ahmad S.A., Abdul Khalil K., Awad E.A., Akhtar M.T., Sazili A.Q. // Polymers (Basel). 2021. V. 13. P. 1554. https://doi.org/10.3390/polym13101554
- Ahmad A., Ismail A., Ahmad S.A., Khalil K.A., Kee L.T., Awad E.A., Sazili A.Q. // J. Food Sci. Technol. 2020. V. 57. P. 3772–3781. https://doi.org/10.1007/s13197-020-04409-2
- Ahmad T., Ismail A., Ahmad S.A., Khalil K A., Kee L.T., Awad E.A., Sazili A.Q., Ahmad A. // Int. J. Food Prop. 2019. V. 22. P. 138–153. https://doi.org/10.1080/10942912.2019.1576731
- He L., Gao Y., Wang X., Han L., Yu Q., Shi H., Song R. // Ultrasonics Sonochemistry. 2021. V. 78. P. 105738. https://doi.org/10.1016/j.ultsonch.2021.105738
- Zou Y., Wang W., Li Q., Chen Y., Zheng D., Zou Y., Zhang M., Zhao T., Mao G., Feng W., Wu X., Yang L. // Process. Biochem. 2016. V. 51. P. 431–443. https://doi.org/10.1016/j.procbio.2015.12.011
- Rajapakse N., Mendis E., Jung W.K., Je J.Y., Kim S.K. // Food Res. Int. 2005. V. 38. P. 175–182. https://doi.org/10.1016/j.foodres.2004.10.002
- Mulyani S., Setyabudi F.M.S., Pranoto Y., Santoso U. // Korean J. Food Sci. Anim. Resour. 2017. V. 37. P. 708– 715. https://doi.org/10.5851/kosfa.2017.37.5.708
- Aykın-Dinçer E., Koç A., Erbas M. // Poult. Sci. 2017. V. 96. P. 4124–4131. https://doi.org/10.3382/ps/pex237
- Al-Hassan A.A. // Food Hydrocoll. 2020. V. 101. P. 105457. https://doi.org/10.1016/j.foodhyd.2019.105457
- Cao S., Wang Y., Xing L., Zhang W., Zhou G. // Food and Bioproducts Processing. 2020. V. 121. P. 213–223. https://doi.org/10.1016/j.fbp.2020.03.001
- Hafidz R.M.R.N., Yaakob C.M., Amin I., Noorfaizan A. // Int. Food Res. J. 2011. V. 18. P. 787–791.
- Norizah M.S., Badii F., Howell N.K. // Food Hydrocolloids. 2013. V. 30. P. 143–151. https://doi.org/10.1016/j.foodhyd.2012.05.009
- Eastoe J.E., Leach A.A. // Chemical Constitution of Gelatin. In: The Science and Technology of Gelatin // Eds. Ward A.G., Courts A. London: Academic Press, 1977. P. 73–107.
- Chen L., Ma L., Zhou M., Liu Y., Zhang Y. // Food Hydrocol. 2014. V. 36. P. 316–322. https://doi.org/10.1016/j.foodhyd.2013.10.012
- Kremenevskaya M.I., Dobryagin R.V., Bogomolov V.V., Snarkiy S.I. // Theory and Practice of Meat Processing. 2019. V. 4. Р. 20–26. https://doi.org/10.21323/2414-438X-2019-4-2-20-26
- Abedinia A., Ariffin F., Huda N., Nafchi A.М. // Int. J. Biol. Macromol. 2017. V. 98. Р. 586–594. https://doi.org/10.1016/j.ijbiomac.2017.01.139
Supplementary files
