New cationic carbohydrate-containing amphiphiles and liposomes based on them for effective delivery of short nucleic acids into eukaryotic cells

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

New cationic amphiphiles containing lactose or D-mannose residues were synthesized and cationic liposomes with 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) were obtained. The cytotoxicity and transfection activity of new carbohydrate-containing amphiphiles and cationic liposomes against HEK 293, BHK and BHK IR-780 cells were studied. It has been shown that cationic amphiphiles effectively deliver only short fluorescein-labeled oligodeoxyribonucleotide into eukaryotic cells, while cationic liposomes formed by lactose containing amphiphile and DOPE effectively mediate the transport of short oligonucleotide and small interfering RNA and were non-toxic to cells. The resulting cationic amphiphiles can be used for intracellular delivering of nucleic acids both individually and part of cationic liposomes.

Texto integral

Acesso é fechado

Sobre autores

E. Shmendel

MIREA – Russian Technological University

Autor responsável pela correspondência
Email: elena_shmendel@mail.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, prosp. Vernadskogo 86, Moscow, 119571

A. Buyanova

MIREA – Russian Technological University

Email: elena_shmendel@mail.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, prosp. Vernadskogo 86, Moscow, 119571

O. Markov

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Email: elena_shmendel@mail.ru
Rússia, prosp. ak. Lavrent’eva 8, Novosibirsk, 630090

N. Morozova

MIREA – Russian Technological University

Email: elena_shmendel@mail.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, prosp. Vernadskogo 86, Moscow, 119571

M. Zenkova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Email: elena_shmendel@mail.ru
Rússia, prosp. ak. Lavrent’eva 8, Novosibirsk, 630090

M. Maslov

MIREA – Russian Technological University

Email: elena_shmendel@mail.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, prosp. Vernadskogo 86, Moscow, 119571

Bibliografia

  1. Bulaklak K., Gersbach C.A. // Nat. Commun. 2020. V. 11. P. 11–14. https://doi.org/10.1038/s41467-020-19505-2
  2. Mendes B.B., Conniot J., Avital A., Yao D., Jiang X., Zhou X., Sharf-Pauker N., Xiao Y., Adir O., Liang H., Shi J., Schroeder A., Conde J. // Nat. Rev. Methods Prim. 2022. V. 2. P. 24. https://doi.org/10.1038/s43586-022-00104-y
  3. Lundstrom K. // Viruses. 2023. V. 15. P. 698. https://doi.org/10.3390/v15030698
  4. Wang C., Pan C., Yong H., Wang F., Bo T., Zhao Y., Ma B., He W., Li M. // J. Nanobiotechnology. 2023. V. 21. P. 1–18. https://doi.org/10.1186/s12951-023-02044-5
  5. Tseu G.Y.W., Kamaruzaman K.A. // Molecules. 2023. V. 28. P. 1498. https://doi.org/10.3390/molecules28031498
  6. Nsairat H., Alshaer W., Odeh F., Esawi E., Khater D., Bawab A.A., El-Tanani M., Awidi A., Mubarak M.S. // OpenNano. 2023. V. 11. P. 100132. https://doi.org/10.1016/j.onano.2023.100132
  7. Gao Y., Liu X., Chen N., Yang X., Tang F. // Pharmaceutics. 2023. V. 15. P. 178. https://doi.org/10.3390/pharmaceutics15010178
  8. Iqbal S., Blenner M., Alexander-Bryant A., Larsen J. // Biomacromolecules. 2020. V. 21. P. 1327–1350. https://doi.org/10.1021/acs.biomac.9b01754
  9. Rai D.B., Pooja D., Kulhari H. // In: Pharmaceutical Applications of Dendrimers, Elsevier Inc., 2019. https://doi.org/10.1016/B978-0-12-814527-2.00009-3
  10. Jiang Y., Fan M., Yang Z., Liu X., Xu Z., Liu S., Feng G., Tang S., Li Z., Zhang Y., Chen S., Yang C., Law W.C., Dong B., Xu G., Yong K.T. // Biomater. Sci. 2022. V. 10. P. 6862–6892. https://doi.org/10.1039/D2BM01001A
  11. Mirza Z., Karim S. // In: Recent Advancements and Future Challenges. Elsevier Ltd., 2021. https://doi.org/10.1016/j.semcancer.2019.10.020
  12. Duan L., Xu L, Xu X, Qin Z., Zhou X., Xiao Y., Liang Y., Xia J. // Nanoscale. 2021. V. 13. P. 1387–1397. https://doi.org/10.1039/d0nr07622h
  13. Ponti F., Campolungo M., Melchiori C., Bono N., Candiani G. // Chem. Phys. Lipids. 2021. V. 235. P. 105032. https://doi.org/10.1016/j.chemphyslip.2020.105032
  14. Belhadj Z., Qie Y., Carney R.P., Li Y., Nie G. // BMEMat. 2023. V. 1. P. e12018. https://doi.org/10.1002/bmm2.12018
  15. Liu C., Zhang L., Zhu W., Guo R., Sun H., Chen X., Deng N. // Mol. Ther. Methods Clin. Dev. 2020. V. 18. P. 751–764. https://doi.org/10.1016/j.omtm.2020.07.015
  16. Gangopadhyay S., Nikam R.R., Gore K.R. // Nucleic Acid Ther. 2021. V. 31. P. 245–270. https://doi.org/10.1089/nat.2020.0882
  17. Shmendel E.V., Puchkov P.A., Maslov M.A. // Pharmaceutics. 2023. V. 15. P. 1400. https://doi.org/10.3390/pharmaceutics15051400
  18. Jain A., Jain S.K. // Curr. Mol. Med. 2018. V. 18. P. 44–57. https://doi.org/10.2174/1566524018666180416101522
  19. Fu S., Xu X., Ma Y., Zhang S., Zhang S. // J. Drug Target. 2019. V. 27. P. 1–11. https://doi.org/10.1080/1061186X.2018.1455841
  20. Battisegola C., Billi C., Molaro M.C., Schiano M.E., Nieddu M., Failla M., Marini E., Albrizio S., Sodano F., Rimoli M.G. // Pharmaceuticals. 2024. V. 17. P. 308. https://doi.org/10.3390/ph17030308
  21. Fatima M., Karwasra R., Almalki W.H., Sahebkar A., Kesharwani P. // Eur. Polym. J. 2023. V. 183. P. 111759. https://doi.org/10.1016/j.eurpolymj.2022.111759
  22. Jain A., Jain A., Parajuli P., Mishra V., Ghoshal G., Singh B., Shivhare U.S., Katare O.P., Kesharwani P. // Drug Discov. Today. 2018. V. 23. P. 960–973. https://doi.org/10.1016/j.drudis.2017.11.003
  23. Paurević M., Šrajer Gajdošik M., Ribić R. // Int. J. Mol. Sci. 2024. V. 25. P. 1370. https://doi.org/10.3390/ijms25031370
  24. Goswami R., O’hagan D.T., Adamo R., Baudner B.C. // Pharmaceutics. 2021. V. 13. P. 1–14. https://doi.org/10.3390/pharmaceutics13020240
  25. Goswami R., Chatzikleanthous D., Lou G., Giusti F., Bonci A., Taccone M., Brazzoli M., Gallorini S., Ferlenghi I., Berti F., O’Hagan D.T., Pergola C., Baudner B.C., Adamo R. // ACS Infect. Dis. 2019. V. 5. P. 1546–1558. https://doi.org/10.1021/acsinfecdis.9b00084
  26. Maslov M.A., Medvedeva D.A., Rapoport D.A., Serikov R.N., Morozova N.G., Serebrennikova G.A., Vlassov V.V., Zenkova M.A. // Bioorg. Med. Chem. Lett. 2011. V. 21. P. 2937–2940. https://doi.org/10.1016/j.bmcl.2011.03.056
  27. Liu K., Jiang X., Hunziker P. // Nanoscale. 2016. V. 8. P. 16091–16156. https://doi.org/10.1039/C6NR04489A
  28. Hayashi Y., Higashi T., Motoyama K., Jono H., Ando Y., Onodera R., Arima H. // Biol. Pharm. Bull. 2019. V. 42. P. 1679–1688. https://doi.org/10.1248/bpb.b19-00278
  29. Gadekar A., Bhowmick S., Pandit A. // Adv. Funct. Mater. 2020. V. 30. P. 1910031. https://doi.org/10.1002/adfm.201910031
  30. Miller K.A., Kumar E.V.K.S., Wood S.J., Cromer J.R., Datta A., David S.A. // J. Med. Chem. 2005. V. 48. P. 2589–2599. https://doi.org/10.1021/jm049449j
  31. Kim B.K., Hwang G.B., Seu Y.B., Choi J.S., Jin K.S., Doh K.O. // Biochim. Biophys. Acta Biomembr. 2015. V. 1848. P. 1996–2001. https://doi.org/10.1016/j.bbamem.2015.06.02027
  32. Luneva A.S., Puchkov P.A., Shmendel E.V., Zenkova M.A., Kuzevanova A.Yu., Alimov A.A., Karpukhin A.V., Maslov M.A. // Russ. J. Bioorg. Chem. 2018. V. 44. P. 724–731. https://doi.org/10.1134/S1068162019010084
  33. Yang J.P., Huang L. // Gene Ther. 1997. V. 4. P. 950– 960. https://doi.org/10.1038/sj.gt.3300485
  34. Allen M.C., Gale P.A., Hunter A.C., Lloyd A., Hardy S.P. // Biochim. Biophys. Acta. 2000. V. 1509. P. 229–236. https://doi.org/10.1016/s0005-2736(00)00297-2
  35. Li S., Tseng W.C., Stolz D.B., Wu S.P., Watkins S.C., Huang L. // Gene Ther. 1999. V. 6. P. 585–594. https://doi.org/10.1038/sj.gt.3300865
  36. Landry B., Valencia-Serna J., Gul-Uludag H., Jiang X., Janowska-Wieczorek A., Brandwein J., Uludag H. // Mol. Ther. Nucl. Acids. 2015. V. 4. P. e240. https://doi.org/10.1038/mtna.2015.13
  37. Baghban R., Ghasemian A., Mahmoodi S. // Arch. Microbiol. 2023. V. 205. P. 1–15. https://doi.org/10.1007/s00203-023-03480-5
  38. Lin Y.X., Wang Y., Blake S., Yu M., Mei L., Wang H., Shi J. // Theranostics. 2020. V. 10. P. 281–299. https://doi.org/10.7150/thno.35568
  39. Carmichael J., Degraff W.G., Gazdar A.F., Minna J.D., Mitchell J.B. // AACR. 1987. V. 47. P. 936–942.
  40. Audouy S., Molema G., de Leij L., Hoekstra D. // J. Gene Med. 2000. V. 2. P. 465–476. https://doi.org/10.1002/1521-2254(200011/12) 2:6<465::AID-JGM141>3.0.CO;2-Z
  41. Wang F., Yu L., Monopoli M.P., Sandin P., Mahon E., Salvati A., Dawson K.A. // Nanomedicine. 2013. V. 9. P. 1159–1168. https://doi.org/ 10.1016/j.nano.2013.04.010
  42. Reiser A., Woschée D., Mehrotra N., Krzysztoń R., Strey H.H., Rädler J.O. // Integr. Biol. (Camb). 2019. V. 11. P. 362–371. https://doi.org/10.1093/intbio/zyz030

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Carbohydrate-containing cationic amphiphiles D1–D3.

Baixar (58KB)
3. Fig. 2. D2-DOPE liposome cytotoxicity assay. HEK 293 cell viability was assessed in real time using the xCELLigence instrument. HEK 293 cells were seeded in 16-well plates at a density of 5 × 103 cells/well. After 24 h, cationic D2-DOPE liposomes were added to the cells at a concentration of 4 to 64 μM, and after 4 h of incubation with cationic liposomes, FBS was added to the medium to a concentration of 10%.

Baixar (143KB)
4. Fig. 3. Accumulation of FITC-ODN complexes with cationic amphiphiles D1–D3 in HEK 293 cells in the presence of 10% FBS. FITC-ODN/cationic amphiphiles D1–D3 complexes were formed at N/P = 1/1.5, 1/1, and 1.25/1 ratios. The percentage of FITC-positive cells (a) and the level of average fluorescence intensity of cells in the population (b) were determined by flow cytometry after 4 h of cell incubation with the complexes. The standard deviation does not exceed 8%.

Baixar (117KB)
5. Fig. 4. Accumulation of FITC-ODN complexes with cationic liposomes D1-DOPE, D2-DOPE, and D3-DOPE in HEK 293 cells. FITC-ODN/cationic liposomes D1-DOPE, D2-DOPE, and D3-DOPE complexes were formed at N/P = 1/2, 1/1, and 2/1 ratios. Transfection was performed in the absence (a, b) or presence of 10% FBS (c, d) in the cell medium. The percentage of transfected cells (a, c) and the level of average fluorescence intensity of cells in the population (b, d) were measured by flow cytometry after 4 h of cell incubation with the complexes. The standard deviation does not exceed 9%.

Baixar (230KB)
6. Fig. 5. Delivery of pEGFP-C2 plasmid DNA using cationic amphiphiles D1–D3 into HEK 293 cells in the absence (a, b) or presence of 10% FBS (c, d) in the cell medium. The percentage of EGFP-positive cells (a, c) and the level of average fluorescence intensity (EGFP expression) of cells in the population (b, d) were measured by flow cytometry 48 h after incubation of cells with the complexes. The standard deviation does not exceed 8%.

Baixar (205KB)
7. Fig. 6. Delivery of pEGFP-C2 plasmid DNA complexed with cationic liposomes D1-DOPE, D2-DOPE, and D3-DOPE into HEK 293 cells in the absence (a, b) or presence of 10% FBS (c, d) in the cell medium. The percentage of EGFP-expressing cells (a, c) and the level of average fluorescence intensity (EGFP expression) of cells in the population (b, d) were measured by flow cytometry 48 h after incubation of the cells with the complexes. The standard deviation does not exceed 7%.

Baixar (216KB)
8. Fig. 7. Inhibition of EGFP protein expression in transgenic BHK IR-780 cells after siRNA delivery using cationic amphiphiles D1–D3 (a, b) or cationic liposomes D1-DOPE and D2-DOPE (c, d) in the absence (a, c) or in the presence of 10% FBS (b, d) in the cell medium.

Baixar (214KB)
9. Scheme 1. Synthesis of new cationic amphiphiles containing lactose or D-mannose residues. a – 7AcLacBr/4AcManBr, CdCO3; b – Pd/C, NH4+CHOO–; c – succinic anhydride, DMAP, Et3N; d – N1,N4,N9-tri-tert-butoxycarbonyl-1,12-diamino-4,9-diazadodecane, HBTU, N,N-diisopropylethylamine; e – 1) TFA, 2) 0.04 N MeONa/MeOH, 3) 4 N HCl in dioxane.

Baixar (210KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024