Synthesis and cytotoxic activity evaluation of maleopimaric and dihydroquinopimaric esters and amides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The new 1-, 1,4- and 1,4,20-diethoxyphosphoryl-containing esters were synthesized as a result of interaction of dihydroquinopimaric acid methyl ester hydroxyl derivatives with diethylchlorophosphite, A study of the cytotoxic activity in vitro on 60 cell lines of nine different human tumors of methyl ester of dihydroquinopimaric acid with diethoxyphosphoryl, furan and indole fragments, as well as diterpene amides with linear, heterocyclic and aromatic amines residues showed that diethoxyphosphoryl and benzylamine substituents are of key importance for the manifestation of the cytotoxic effect. Diethoxyphosphoryl derivatives (XIX) and (XVII), and benzylamide (IX) showed cytotoxic activity against one, seven and four cell lines of breast cancer, leukemia, non-small cell lung cancer, melanoma and prostate cancer, respectively. The greatest activity was demonstrated by maleopimaric acid benzylamide (XIII), which effectively inhibited the growth of 19 cell lines of eight cancer types and had a significant cytotoxic effect against all studied leukemia cell lines.

Full Text

Restricted Access

About the authors

E. V. Tretyakova

Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: tretyakovaelv@gmail.com
Russian Federation, prosp. Oktyabrya 71, Ufa, 450054

S. R. Sharafutdinova

Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences; Ufa University of Science and Technology

Email: tretyakovaelv@gmail.com
Russian Federation, prosp. Oktyabrya 71, Ufa, 450054; Ufa, ul. Zaki Validi 32, 450076

References

  1. Wiemann J., Al-Harrasi A., Csuk R. // Anticancer Agents Med. Chem. 2020. V. 20. P. 1756–1767. https://doi.org/10.2174/1871520620666200317110010
  2. Tretyakova E.V., Smirnova I.E., Kazakova O.B., Tolstikov G.A., Yavorskaya N.P., Golubeva I.S., Pugacheva R.B., Apryshko G.N., Poroikov V.V. // Bioorg. Med. Chem. 2014. V. 22. P. 6481–6489. https://doi.org/10.1016/j.bmc.2014.09.030
  3. Ahmad B., Tian C., Tang J.-X., Dumbuya J.S., Li W., Lu J. // Front. Pharmacol. 2024. V. 15. P. 1392203. https://doi.org/10.3389/fphar.2024.1392203
  4. Haffez H., Osman S., Ebrahim H.Y., Hassan Z.A. // Molecules. 2022. V. 27. P. 293. https://doi.org/10.3390/molecules27010293
  5. Liu X., Chen W., Liu Q., Dai J. // Onco Targets Ther. 2019. V. 12. P. 4825–4837. https://doi.org/10.2147/OTT.S199161
  6. Xu Y., Tong Y., Lei Z., Zhu J., Wan L. // Biomed. Pharmacother. 2023. V. 158. P. 114154. https://doi.org/10.1016/j.biopha.2022.114154
  7. Lin C.H., Chuang H.S. // Patent US7015248B2, published 01.04.2004.
  8. Tanaka R., Tokuda H., Ezaki Y. // Phytomedicine. 2008. V. 15. P. 985–992. https://doi.org/10.1016/j.phymed.2008.02.020
  9. Yoshida N., Takada T., Yamamura Y., Adachi I., Suzuki H., Kawakami J. // Drug Metab. Dispos. 2008. V. 36. P. 1206–1211. https://doi.org/10.1124/dmd.107.019513
  10. Hsieh Y.S., Yang S.F., Hsieh Y.H., Hung C. H., Chu S.C., Yang S.H., Chen P.N. // Am. J. Chin. Med. 2015. V. 43. P. 1697–1714. https://doi.org/10.1142/S0192415X15500962
  11. Kazakova O.B., Smirnova I.E., Do Tkhi Tkhu Kh, Tkhankh Tra Nguen, Apryshko G.N., Zhukova O.S., Medvedeva N.I., Nazyrov T.I., Tret’iakova E.V., Chudov I.V., Ismagilova A.F., Suponitskii K.Iu., Kazakov D.V., Safarov F.E., Tolstikov G.A. // Russ. J. Bioorg. Chem. 2013. V. 39. P. 202–210. https://doi.org/10.1134/s1068162013020088.
  12. Tret’yakova E.V., Zakirova G.F., Salimova E.V., Kukovinets O.S., Odinokov V.N., Parfenova L.V. // Med. Chem. Res. 2018. V. 27. P. 2199–2213. https://doi.org/10.1007/s00044-018-2227-4
  13. Smirnova A.A., Zakirova L.M., Smirnova I.E., Tretyakova E.V. // Molbank. 2023. V. 2023. P. M1707. https://doi.org/10.3390/M1707
  14. Tretyakova E.V., Salimova E.V., Parfenova L.V., Yunusbaeva M.M., Dzhemileva L.U., D’yakonov V.V., Dzhemilev U.M. // Anticancer Agents Med. Chem. 2019. V. 19. P. 1172–1183. https://doi.org/10.2174/1871520619666190404100846
  15. Tret’yakova E.V., Salimova E.V., Parfenova L.V. // Nat. Prod. Res. 2020. V. 36. P. 79–86. https://doi.org/10.1080/14786419.2020.1762187
  16. Tretyakova E., Heise N.V., Csuk R., Kazakova O. // Nat. Prod. Res. 2023. P. 1–9. https://doi.org/10.1080/14786419.2023.2266107
  17. Smirnova I.E., Tret’yakova E.V., Baev D.S., Kazakova O.B. // Nat. Prod. Res. 2023. V. 37. P. 313–321. https://doi.org/10.1080/14786419.2021.1969566
  18. Zielonka J., Josep J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. // Chem. Rev. 2017. V. 117. P. 10043–10120. https://doi.org/10.1021/acs.chemrev.7b00042
  19. Chrobak E., Bębenek E., Kadela-Tomanek M., Latocha M., Jelsch C., Wenger E., Boryczka S. // Molecules. 2016. V. 21. P. 1123. https://doi.org/10.3390/molecules21091123
  20. Abdou W.M., Shaddy A.A. // Arkivoc. 2009. P. 143–182. https://doi.org/10.3998/ark.5550190.0010.910
  21. Spivak A.Y., Nedopekina D.A., Shakurova E.R., Khalitova R.R., Gubaidullin R.R., Odinokov V.N., Dzhemilev U.M., Bel’skii Y.P., Bel’skaya N.V., Stankevich S.A., Korotkaya E.V., Khazanov V.A. // Russ. Chem. Bull. 2013. V. 62. P. 188–198. https://doi.org/10.1007/s11172-013-0028-y
  22. Спивак А.Ю., Халитова Р.Р., Шакурова Э.Р., Недопекина Д.А., Губайдуллин Р.Р., Одиноков В.Н., Джемилев У.М., Бельский Ю.П., Бельская Н.В., Станкевич С.А., Хазанов В.А. // Патент RU2551647C2, опубл. 27.05.2015.
  23. Кайзер Д., Спивак А.Ю., Недопекина Д.А., Губайдуллин Р.Р., Одиноков В.Н., Джемилев У.М., Бельский Ю.П., Бельская Н.В., Станкевич С.А., Хазанов В.А. // Патент RU2576658C2, опубл. 10.03.2016.
  24. Shinkareva A.M., Nemtarev A.V., Chachkov D.V., Dobrynin A.B., Litvinov I.A., Mironov V.F. // Mend. Commun. 2024. V. 34. P. 113–115. https://doi.org/10.1016/j.mencom.2024.01.034
  25. Smirnova I.E., Tret’yakova E.V., Flekhter O.B., Spirikhin L.V., Galin F.Z., Tolstikov G.A., Starikova Z.A., Korlyukov A.A. // Russ. J. Org. Chem. 2008. V. 44. P. 1598–1605. https://doi.org/10.1134/S1070428008110055
  26. Vafina G.F., Khanova M.D., Meshcheryakova S.A., Bulgakov A.K. // Chem. Nat. Compd. 2019. V. 55. P. 868–870. https://doi.org/10.1007/s10600-019-02835-z
  27. NCI-60 Screening Methodology // National Cancer Institute. Developmental Therapeutics Program. https://dtp.cancer.gov/discovery_development/nci-60/methodology.htm
  28. Grever M.R., Schepartz S.A., Chabner B.A. // Semin. Oncol. 1992. V. 19. P. 622–638.
  29. Boyd M.R., Paull K.D. // Drug Dev. Res. 1995. V. 34. P. 91–109. https://doi.org/10.1002/ddr.430340203
  30. Shoemaker R.H. // Nature Rev. 2006. V. 6. P. 813–823. https://doi.org/10.1038/nrc1951

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Methyl dihydroquinopimarate esters (I–V) [16] and amides of dihydroquinopimaric (VI–IX) and maleopimaric (X–XIII) acids [17]. Reagents and conditions: (EtO)2POCl, DMAP, pyridine, 0–23°C, 3 h.

Download (117KB)
3. Scheme 1. Synthesis of diethoxyphosphoryl derivatives (XVII–XIX).

Download (113KB)

Copyright (c) 2024 Russian Academy of Sciences