Blood erythrocytes – a biological model for evaluating antioxidant activity of chemical compounds
- Autores: Shevchenko O.G.1
-
Afiliações:
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
- Edição: Volume 50, Nº 6 (2024)
- Páginas: 720-734
- Seção: Articles
- URL: https://archivog.com/0132-3423/article/view/670749
- DOI: https://doi.org/10.31857/S0132342324060026
- EDN: https://elibrary.ru/NGLVVD
- ID: 670749
Citar
Resumo
This review presents an analysis of literature, including our own work, on various aspects of using RBC as an in vitro model in the comprehensive evaluation of antioxidant activity of a wide range of natural and synthetic compounds, their mixtures, and plant extracts. The existing practice of using human, laboratory, and domestic animal red blood cells is examined. The characteristics of the most commonly used initiators of oxidative stress in such studies, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) and H2O2, as well as the mechanisms underlying the development of the hemolytic process are discussed. A critical analysis of methodological approaches to assessing the level of hemolysis is provided. The review further discusses the evaluation of erythrocyte survival under oxidative stress conditions and the ability of the tested compounds to act as membrane protectors. The text considers the criteria for a comprehensive assessment of erythrocytes, facilitating the study of cellular and molecular mechanisms underlying antioxidant activity of a wide range of substances on a model of oxidative hemolysis of erythrocytes. Traditional methods include assessment of the intensity of membrane lipid peroxidation (LPO) processes through measurement of concentration of products that react with 2-thiobarbituric acid, a s well assessment of relative content of oxidized forms of hemoglobin in erythrocytes. The use of modern fluorescent methods is another promising approach. In particular, the fluorescence of heme degradation products, the decrease in intensity of which can indicate the presence of antioxidant activity in the compounds under investigation, is a sensitive marker of oxidative stress in erythrocytes. Another prominent fluorescent method is the assessment of the level of oxidative stress by measuring the intracellular concentration of ROS in erythrocytes. Analysis of our own and literature data allows us to recommend the method of oxidative hemolysis of erythrocytes as the method to screen newly developed compounds in order to select the most interesting candidates for further in-depth studies. It is appropriate for establishing the structure-activity relationship and developing a strategy for the targeted synthesis of new biologically active compounds combining high hemocompatibility and antioxidant activity, promising for biomedical applications.
Palavras-chave
Texto integral

Sobre autores
O. Shevchenko
Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: shevchenko@ib.komisc.ru
Rússia, ul. Kommunisticheskaya 28, Syktyvkar, 167982
Bibliografia
- Prior R.L., Cao G. // HortScience. 2000. V. 35. P. 588– 592. https://doi.org/10.21273/HORTSCI.35.4.588
- Litescu S.C., Eremia S., Radu G.L. // Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology / Eds. Giardi M.T., Rea G., Berra B. Springer, Boston, MA, 2010. V. 698. https://doi.org/10.1007/978-1-4419-7347-4_18
- Neha K., Haider M.R., Pathak A., Yar M.S. // Eur. J. Med. Chem. 2019. V. 178. P. 687–704. https://doi.org/10.1016/j.ejmech.2019.06.010
- Shlapakova T.I., Kostin R.K., Tyagunova E.E. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 657–674. https://doi.org/10.31857/S013234232005022X
- Cruz T.M., Lima A.S., Silva A.O., Mohammadi N., Zhang L., Azevedo L., Marques M.B., Granato D. // Food Chem. 2024. V. 440. Р. 138281. https://doi.org/10.1016/j.foodchem.2023.138281
- Pisoschi A.M., Pop A., Iordache F., Stanca L., Predoi G., Serban A.I. // Eur. J. Med. Chem. 2021. V. 209. Р. 112891. https://doi.org/10.1016/j.ejmech.2020.112891
- Sies H. // Am. J. Med. 1991. V. 91. P. 31S–38S. https://doi.org/10.1016/0002-9343(91)90281-2
- McCall M.R., Frei B. // Free Radic. Biol. Med. 1999. V. 26. P. 1034–1053. https://doi.org/10.1016/s0891-5849(98)00302-5
- Willett W.C. // Science. 2002. V. 296. P. 695–698. https://doi.org/10.1126/science.1071055
- Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. // Oxid. Med. Cell. Longev. 2017. V. 2017. Р. 8416763. https://doi.org/10.1155/2017/8416763
- Siddeeg A., AlKehayez N.M., Abu-Hiamed H.A., Al-Sanea E.A., AL-Farga A.M. // Saudi J. Biol. Sci. 2021. V. 28. P. 1633–1644. https://doi.org/10.1016/j.sjbs.2020.11.064
- Halliwell B., Gutteridge J.M.C. // Free Radicals in Biology and Medicine, 3rd ed. Oxford, New York: Oxford University Press, 1999. 936 p. ISBN: 9780198500452.
- Noda N., Wakasugi H. // Japan Med. Assoc. J. 2001. V. 44. P. 535–539.
- Wang X., Wang W., Li L., Perry G., Lee H., Zhu X. // Biochim. Biophys. Acta. 2014. V. 1842. P. 1240–1247. https://doi.org/10.1016/j.bbadis.2013.10.015
- Wojtunik-Kulesza K.A., Oniszczuk A., Oniszczuk T., Waksmundzka-Hajnos M. // Rev. Biomed. Pharmacother. 2016. V. 78. Р. 39–49. https://doi.org/10.1016/j.biopha.2015.12.024
- Chen C., Zhang Y., Gao Y., Xu Q., Ju X., Wang L. // J. Functional Foods. 2016. V. 26. P. 394–405. https://doi.org/10.1016/j.jff.2016.08.016
- Ranneh Y., Ali F., Akim A.M., Abd H., Hamid H., Khazaai A.F. // Appl. Biol. Chem. 2017. V. 60. P. 327–338. https://doi.org/10.1007/s13765-017-0285-9
- Liu Z.-Q. // Eur. J. Med. Chem. 2020. V. 189. Р. 112020. https://doi.org/10.1016/j.ejmech.2019.112020
- McKay G.J., Lyner N., Linden G.J., Kee F., Moitry M., Biasch K., Amouyel Ph., Dallongeville J., Bongard V., Ferrières J., Gey K.F., Patterson C.C., Woodside J.V. // Eur. J. Nutr. 2021. V. 60. P. 2631–2641. https://doi.org/10.1007/s00394-020-02455-2
- Varesi A., Varesi A., Chirumbolo S., Lim C., Pierella E, Piccini G.B., Carrara A., Ricevuti G., Scassellati C., Bonvicini C., Pascale A. // Antioxidants (Basel). 2022. V. 11. Р. 1224. https://doi.org/10.3390/antiox11071224
- Martemucci G., Costagliola C., Mariano M., D’Аndrea L., Napolitano P., D’Alessandro A. // Oxygen. 2022. V. 2. P. 48–78. https://doi.org/10.3390/oxygen2020006
- Liu Z.-Q. // Food Chem. 2022. V. 380. Р. 132143. https://doi.org/10.1016/j.foodchem.2022.132143
- Cavallini G., Dachà M., Potenza L., Ranieri A., Scattino C., Castagna A., Bergamini E. // Plant Foods Hum. Nutr. 2014. V. 69. P. 108–114. https://doi.org/10.1007/s11130-014-0414-0
- Carocho M., Morales P., Ferreira I.C.F.R. // Trends Food Sci. Technol. 2018. V. 71. P. 107–120. https://doi.org/10.1016/j.tifs.2017.11.008
- Gömert E.D., Gökmen V. // Food Res. Int. 2018. V. 105. P. 76–93. https://doi.org/10.1016/j.foodres.2017.10.056
- Olmo-Cunillera A., Escobar-Avello D., Pérez A.J., Marhuenda-Muñoz M., Lamuela-Raventós R.M., Vallverdú-Queralt A. // Nutrients. 2020. V. 12. Р. 54. https://doi.org/10.3390/nu12010054
- Sharma A., Yada M., Tiwari A., Ali U., Krishania M., Bala M., Mridula D., Sharma P., Goudar G., Roy J.K., Navik U., Garg M. // J. Cereal Sci. 2023. V. 112. Р. 103719. https://doi.org/10.1016/j.jcs.2023.103719
- Chen X., Tang W., Li X., Zhuang K., Lyu Q. // LWT. 2023. V. 177. Р. 114369. https://doi.org/10.1016/j.lwt.2022.114369
- Jesus F., Gonçalves A.C., Alves G., Silva L.R. // Food Res. Int. 2019. V. 116. P. 600–610. https://doi.org/10.1016/j.foodres.2018.08.079
- Zheng Q., Tan W., Feng X., Feng K., Zhong W., Liao C., Liu Y., Li S., Hu W. // Molecules. 2022. V. 27. Р. 7625. https://doi.org/10.3390/molecules27217625
- Adelakun O.E., Kudanga, T., Green, I.R., le Roes-Hill, M., Burton, S.G. // Process Biochem. 2012. V. 47. P. 1926– 1932. https://doi.org/10.1016/j.procbio.2012.06.027
- Aruwa C.E., Amoo S.O., Koorbanally N., Kudanga T. // Biocatal. Agric. Biotechnol. 2021. V. 35. Р. 102105. https://doi.org/10.1016/j.bcab.2021.102105
- Huang D., Ou B., Prior R.L. // J. Agric. Food Chem. 2005. V. 53. P. 184–11856. https://doi.org/10.1021/jf030723c
- Laguerre M., Lecomte J., Villeneuve P. // Prog. Lipid Res. 2007. V. 46. Р. 244. https://doi.org/10.1016/j.plipres.2007.05.002
- Singh S., Singh R.P. // Food Rev. Int. 2008. V. 24. P. 392–415. https://doi.org/10.1080/87559120802304269
- Tabart J., Kevers C., Pincemail J., Defraigne J.-O., Dommes J. // Food Chem. 2009. V. 113. P. 1226–1233. https://doi.org/10.1016/j.foodchem.2008.08.013
- Niki E. // Free Radic. Biol. Med. 2010. V. 49. P. 503– 515. https://doi.org/10.1016/j.freeradbiomed.2010.04.016
- Fernandes J.C., Eaton P., Nascimento H., Giao M.S., Ramos O.S., Belo L., Silva A.S., Pintado M.E., Malcata F.X. // Carbohydr. Polym. 2010. V. 79. P. 1101– 1106. https://doi.org/10.1016/j.carbpol.2009.10.050
- Takebayashi J., Chen J., Tai A.A. // In: Advanced Protocols in Oxidative Stress II. Methods in Molecular Biology / Ed. Armstrong D. Totowa, NJ: Humana Press, 2010. V. 594. P. 287–296. https://doi.org/10.1007/978-1-60761-411-1_20
- Alam M.N., Bristi N.J., Rafiquzzaman M. // Saudi Pharm. J. 2013. V. 21. P. 143–152. https://doi.org/10.1016/j.jsps.2012.05.002
- Carocho M., Ferreira I.C.F.R. // Food Chem. Toxicol. 2013. V. 51. P. 15–25. https://doi.org/10.1016/j.fct.2012.09.021
- Martinelli E., Granato D., Azevedo L., Gonçalves J.E., Lorenzo J.M., Munekata P.E.S., Simal-Gandara J., Barba F.J., Carrillo C., Rajoka M.S.R., Lucin L. // Trends Food Sci. Technol. 2021. V. 116. P. 232–243. https://doi.org/10.1016/j.tifs.2021.07.024
- López-Alarcón C., Denicola A. // Anal. Chim. Acta. 2013. V. 763. P. 1–10. https://doi.org/10.1016/j.aca.2012.11.051
- He J.-R., Zhu J.-J., Yin S.-W., Yang X.-Q. // Food Hydrocolloids. 2022. V. 122. Р. 107076. https://doi.org/10.1016/j.foodhyd.2021.107076
- Koga T., Moro K., Terao J. // Lipids. 1998. V. 33. P. 58–995. https://doi.org/10.1007/s11745-998-0244-4
- Arora A., Byrem T.M., Nair M.G., Strasburg G.M. // Arch. Biochem. Biophys. 2000. V. 373. P. 102–109. https://doi.org/10.1006/abbi.1999.1525
- López-Revuelta A., S’anchez-Gallego J.I., Hern’andezHern’andez A., Sánchez-Yagüe Y., Llanillo M. // Chem. Biol. Interact. 2006. V. 161. P. 79–91. https://doi.org/10.1016/j.cbi.2006.03.004
- Blasa M., Candiracci M., Accorsi A., Piacentini M.P., Piatti E. // Food Chem. 2007. V. 104. P. 1635–1640. https://doi.org/10.1016/j.foodchem.2007.03.014
- Chaudhuri S., Banerjee A., Basu K., Sengupta B., Sengupta P.K. // Int. J. Biol. Macromol. 2007. V. 41. P. 42–48. https://doi.org/10.1016/j.ijbiomac.2006.12.003
- Chen Y., Deuster P. // Chemico-Biological Interactions. 2009. V. 182. P. 7–12. https://doi.org/10.1016/j.cbi.2009.06.007
- Hapner C.D., Deuster P., Chen Y. // Chem. Biol. Interact. 2010. V. 186. P. 275–279. https://doi.org/10.1016/j.cbi.2010.05.010
- Koh J.J., Qiu S., Zou H., Lakshminarayanan R., Li J., Zhou X., Tang C., Saraswathi P., Verma C., Tan D.T.H., Tan A.L., Liu S., Beuerman R.W. // Biochim. Biophys. Acta. 2013. V. 1828. P. 834–844. https://doi.org/10.1016/j.bbamem.2012.09.004
- Wang F., Wang T., Lai J., Li M., Zou C. // Biochem. Pharmacol. 2006. V. 71. Р. 799–805. https://doi.org/10.1016/j.bcp.2005.12.002
- Olchowik-Grabarek E., Makarova K., Mavlyanov S., Abdullajanova N., Zamaraeva M. // Environ Sci. Pollut. Res. 2018. V. 25. P. 1200–1209. https://doi.org/10.1007/s11356-017-0520-2
- Sierakowska A., Jasiewicz B., Piosik Ł., Mrówczyńska L. // Sci. Rep. 2023. V. 13. P. 1785. https://doi.org/10.1038/s41598-022-27205-8
- Kumar S.S., Ka K., John M. // Food and Humanity. 2023. V. 1. P. 159–164. https://doi.org/10.1016/j.foohum.2023.05.007
- Shishkina L.N., Kozlov M.V., Marakulina K.M., Plashchina I.G., Plyusnina S.N., Shevchenko O.G., Fedorova I.V., Chukicheva I.Y., Kutchin A.V. // Biophysics. 2012. V. 57. P. 786–791. https://doi.org/10.1134/S0006350912060164
- Shevchenko O.G., Plyusnina S.N., Shishkina L.N., Chukicheva I.Y., Fedorova I.V., Kuchin A.V. // Biochemistry (Moscow) Suppl. Ser. A. 2013. V. 7. P. 302–312. https://doi.org/10.1134/S1990747812060062
- Hseu Y.-C., Chang W.-H., Chen C.-S., J.-W. Liao, Huang C.-J., Lu F.-J., Chia Y.-C., Hsu H.-K., Wu J.-J., Yang H.-L. // Food Chem. Toxicol. 2008. V. 46. P. 105–114. https://doi.org/10.1016/j.fct.2007.07.003
- Filipe P., Silva A.M.S., Seixas R.S.G.R., Pinto D.C.G.A., Santos A., Patterson L.K., Silva J.N., Cavaleiro J.A.S, Freitas J.P., Mazie J.-C., Santus R., Morlie P. // Biochem. Pharmacol. 2009. V. 77. P. 957–964. https://doi.org/10.1016/j.bcp.2008.11.023
- Blasa M., Angelino D., Gennari L., Ninfali P. // Food Chem. 2011. V. 125. P. 685–691. https://doi.org/10.1016/j.foodchem.2010.09.065
- Botta A., Martínez V., Mitjans M., Balboa E., Conde E., Vinardell M.P. // Toxicol. In Vitro. 2014. V. 28. P. 120– 124. https://doi.org/10.1016/j.tiv.2013.10.004
- Chen Y., Lin Q., Wang J., Mu J., Liang Y. // Int. J. Biol. Macromol. 2023. V. 224. P. 958–971. https://doi.org/10.1016/j.ijbiomac.2022.10.181
- Podsiedlik M., Markowicz-Piasecka M., Sikora J. // Chem. Biol. Interact. 2020. V. 332. 109305. https://doi.org/10.1016/j.cbi.2020.109305
- Fujii J., Homma T., Kobayashi S., Warang P., Madkaikar M., Mukherjee M.B. // Free Radic. Res. 2021. V. 55. P. 562–580. https://doi.org/10.1080/10715762.2021.1873318
- Remigante A., Spinelli S., Straface E., Gambardella L., Caruso D., Falliti G., Dossena S., Marino A., Morabito R. // Int. J. Mol. Sci. 2022. V. 23. Р. 10991. https://doi.org/10.3390/ijms231910991
- Niki E., Yamamoto Y., Takahashi M., Yamamoto K., Yamamoto Y., Komuro E., Miki M., Mino M. // J. Nutr. Sci. Vitaminol. (Tokyo). 1988. V. 34. P. 507–515. https://doi.org/10.3177/jnsv.34.507
- Chen J.Y., Huestis W.H. // Biochim. Biophys. Acta. 1997. V. 1323. P. 299–309. https://doi.org/10.1016/s0005-2736(96)00197-6
- Zou C.G., Agar N.S., Jones G.L. // Life Sci. 2001. V. 69. P. 75–86. https://doi.org/10.1016/s0024-3205(01)01112-2
- Reddy C.S.S.S., Subramanyam M.V.V., Vani R., Devi S.A. // Toxicol. In Vitro. 2007. V. 21. P. 1355– 1364. https://doi.org/10.1016/j.tiv.2007.06.010
- Suwalsky M., Vargas P., Avello M., Villena F., Sotomayor C.P. // Int. J. Pharm. 2008. V. 363. P. 85–90. https://doi.org/10.1016/j.ijpharm.2008.07.005
- Suwalsky M., Manrique M., Villena F., Sotomayor C.P. // Biophys. Chem. 2009. V. 141. P. 34–40. https://doi.org/10.1016/j.bpc.2008.12.010
- Omarova E.O., Antonenko Y.N. // Biochemistry (Mosccow). 2014. V. 79. P. 139–145. https://doi.org/10.1134/S0006297914020072
- Manaargadoo-Catin M., Ali-Cherif A., Pougnas J.-L., Perrin C. // Adv. Colloid Interface Sci. 2016. V. 228. P. 1–16. https://doi.org/10.1016/j.cis.2015.10.011
- Suwalsky M., Belmar J., Villena F., Gallardo M.J., Jemiola-Rzeminska M., Strzalka K. // Arch. Biochem. Biophys. 2013. V. 539. P. 9–19. https://doi.org/10.1016/j.abb.2013.09.006
- D’Alessandro A., Hansen K.C., Eisenmesser E.Z., Zimring J.C. // Blood Transfus. 2019. V. 17. P. 281– 288. https://doi.org/10.2450/2019.0072-19
- Petit K., Suwalsky M., Colina J.R., Aguilar L.F., JemiolaRzeminska M., Strzalka K. // Biochim. Biophys. Acta Biomembr. 2019. V. 1861. P. 17–25. https://doi.org/10.1016/j.bbamem.2018.10.009
- Finkel T. // Curr. Opin. Cell. Biol. 1998. V. 10. P. 248–253. https://doi.org/10.1016/s0955-0674(98)80147-6
- Buehler P.W., Alayash A.I. // Antioxid. Redox Signal. 2005. V. 7. P. 1755–1760. https://doi.org/10.1089/ars.2005.7.1755
- Chiu D., Lubin B., Shohet S.B. // Free Radicals in Biology / Ed. Pryor W.A. New York: Academic Press, 1982. V. 5. P. 115–160. ISBN: 9780323156837
- Chiu D., Kuypers F., Lubin B. // Semin. Hematol. 1989. V. 26. P. 257–276.
- Sadrzadeh S.M.H., Graf E., Panter S.S., Hallaway P.E., Eaton J.W. // J. Biol. Chem. 1984. V. 259. P. 14354–14356.
- Clemens M.R., Waller H.D. // Chem. Phys. Lipids. 1987. V. 45. P. 251–268. https://doi.org/10.1016/0009-3084(87)90068-5
- Van den Berg J.M., Kamp J.A.F., Lubin B.H., Roelofsen B., Kuypers F.A. // Free Radic. Biol. Med. V. 1992. V. 12. P. 487–498. https://doi.org/10.1016/0891-5849(92)90102-m
- Domanski A.V., Lapshina E.A., Zavodnik I.B. // Biochemistry (Moscow). 2005. V. 70. P. 761–769. https://doi.org/10.1007/s10541-005-0181-5
- López–Revuelta A., Sánchez-Gallego J.I., HernandezHernandez A., Sánchez-Yagqe J., Llanillo T.M. // Biochim. Biophys. Acta. 2005. V. 1734. P. 74–85. https://doi.org/10.1016/j.bbalip.2005.02.004
- Dai F., Miao Q., Zhou B., Yang L., Liu Z. // Life Sci. 2006. V. 78. P. 2488–2493. https://doi.org/10.1016/j.lfs.2005.10.009
- Liu Z.-Q. // Cell Biochem. Biophys. 2006. V. 44. P. 233–239. https://doi.org/10.1385/CBB:44:2:233
- Shiva S., Subramanyam M.V., Vani R., Asha D. // Toxicol. In Vitro 2007. V. 21. P. 1355–1364. https://doi.org/10.1016/j.tiv.2007.06.010
- Farag M.R., Alagawany M. // Chem. Biol. Interact. 2018. V. 279. P. 73–83. https://doi.org/10.1016/j.cbi.2017.11.007
- Misra H.P., Fridovich I.J. // Biol. Chem. 1972. V. 247. P. 6960–6962. https://doi.org/10.1016/s0021-9258(19)44679-6
- Nagababu E., Chrest F.J., Rifkind J.M. // Biochim. Biophys. Acta. 2003. V. 1620. P. 211–217. https://doi.org/10.1016/S0304-4165(02)00537-8
- Okamoto K., Maruyama T., Kaji Y., Harada M., Mawatari S., Fujino T., Uyesaka N. // Jpn. J. Physiol. 2004. V. 54. P. 39–46. https://doi.org/10.2170/jjphysiol.54.39
- Alburaidi B.S., Alsenaidy А.M., Hasan A., Siddiqi N.J., Alrokayan S.H., Odeibat H.A., Abdulnasir A.J., Khan H.A. // J. King Saud University – Science. 2022. V. 4. Р. 101772. https://doi.org/10.1016/j.jksus.2021.101772
- Anjum R., Maheshwari N., Mahmood R. // J. Trace Elem. Med. Biol. 2022. V. 69. Р. 126888. https://doi.org/10.1016/j.jtemb.2021.126888
- Jeswani G., Alexander A., Saraf S., Saraf S., Qureshi A., Ajazuddin // J. Controlled Release. 2015. V. 211. P. 10–21. https://doi.org/10.1016/j.jconrel.2015.06.001
- Dhonnar S.L., More R.A., Adole V.A., Jagdale B.S., Sadgir N.V., Santosh S. // J. Mol. Struct. 2022. V. 1253. Р. 132216. https://doi.org/10.1016/j.molstruc.2021.132216
- Nuruki Y., Matsumoto H., Tsukada M., Tsukahara H., Takajo T., Tsuchida K., Anzai K. // Chem. Pharm. Bull. 2021. V. 69. P. 67–71. https://doi.org/10.1248/cpb.c20-00568
- Grodzicka M., Pena-Gonzalez C.E., Ortega P., Michlewska S. // Sustainable Materials and Technologies. 2022. V. 33. Р. e00497. https://doi.org/10.1016/j.susmat.2022.e00497
- Li H., Lin G., Liang Z., Li Y., Zhang R. // J. Mol. Struct. 2024. V. 1295. Р. 136808. https://doi.org/10.1016/j.molstruc.2023.136808
- Mustafa Y.F. // J. Mol. Struct. 2024. V. 1302. Р. 137471. https://doi.org/10.1016/j.molstruc.2023.137471
- Saravanan A., Das P., Maruthapandi M., Aryal S., Michaeli S., Mastai Y., Luong J.H.T., Gedanken A. // Surfaces and Interfaces. 2024. V. 46. Р. 103857. https://doi.org/10.1016/j.surfin.2024.103857
- Gangurde K.B., More R.A., Adole V.A., Ghotekar D.S. // J. Mol. Struct. 2024. V. 1299. P. 136760. https://doi.org/10.1016/j.molstruc.2023.136760
- Orsine J.V.C., Costa R., Silva R., Santos M., Novaes M. // Int. J. Nutr. Met. 2012. V. 4. P. 19–23. https://doi.org/10.5897/IJNAM11.064
- Ko F.N., Hsiao G., Kuo Y.H. // Free Radic. Biol. Med. 1997. V. 22. P. 215–222. https://doi.org/10.1016/s0891-5849(96)00295-x
- Wang J., Sun B., Cao Y., Tian Y. // Food Chem.Toxicol. 2009. V. 47. P. 1591–1599. https://doi.org/10.1016/j.fct.2009.04.006
- Bellik Y., Iguer-Ouada M. // Food Chem. 2016. V. 190. P. 468–473. https://doi.org/10.1016/j.foodchem.2015.05.126
- Gonçalves A.C., Bento C., Silva B.M., Silva L.R. // Food Res. Int. 2017. V. 95. P. 91–100. https://doi.org/10.1016/j.foodres.2017.02.023
- Bento C., Gonçalvesa A.C., Silva B., Silva L.R. // J. Functional Foods. 2018. V. 43. P. 224–233. https://doi.org/10.1016/j.jff.2018.02.018
- Du R., Liu K., Zhao S., Chen F. // ACS Omega. 2020. V. 5. P. 12751−12759. https://doi.org/10.1021/acsomega.0c00349
- Ahumada-Santos Y.P., Lуpez-Angulo G., Pinto- González R.M., Clemente-Soto A.F., Lуpez- Valenzuela J.A., Delgado-Vargas F. // ADV. TRADIT. MED. (ADTM). 2024. https://doi.org/10.1007/s13596-023-00735-w
- Ajila C.M., Rao P.U.J.S. // Food Chem. Toxicol. 2008. V. 46. P. 303–309. https://doi.org/10.1016/j.fct.2007.08.024
- Yan Y., Yu C., Chen J., Li X., Wang W., Li S. // Carbohydr. Polym. 2011. V. 83. P. 217–224. https://doi.org/10.1016/j.carbpol.2010.07.045
- Li X.M., Li X.L., Zhou A.G. // Eur. Polymer J. 2007. V. 43. P. 488–497. https://doi.org/10.1016/j.eurpolymj.2006.10.025
- Sun C.L., Wang L., Li J., Liu H. // Food Chem. 2014. V. 160. P. 1–7. https://doi.org/10.1016/j.foodchem.2014.03.067
- Wu G.-H., Hu T., Li Z.-Y., Huang Z.-L., Jiang J.-G. // Food Chem. 2014. V. 148. P. 351–356. https://doi.org/10.1016/j.foodchem.2013.10.029
- Hou J., Cui H.-L. // Curr. Microbiol. 2018. V. 75. P. 266–271. https://doi.org/10.1007/s00284-017-1374-z
- Yin Z.N., Wu W.J., Sun C.Z., Liu H.F., Chen W.B., Zhan Q.P., Lei Z.G., Xin X., Ma J.J., Yao K., Min T., Zhang M.M., Wu H. // Biomed. Environ. Sci. 2019. V. 32. P. 11–21. https://doi.org/10.3967/bes2019.002
- Loganayaki N., Siddhuraju P., Manian S.J. // Food Sci. Technol. 2013. V. 50. P. 687–695. https://doi.org/10.1007/s13197-011-0389-x
- Singh R.P., Kaur G. // Food Chem. Toxicol. 2008. V. 46. P. 553–556. https://doi.org/10.1016/j.fct.2007.08.037
- Shevchenko O.G., Shishkina L.N. // J. Evol. Biochem. Physiol. 2011. V. 47. P. 179–186. https://doi.org/10.1134/S0022093011020071
- Al-Qarawi A.A., Mousa H.M. // J. Arid Environments. 2004. V. 59. P. 675–683. https://doi.org/10.1016/j.jaridenv.2004.02.004
- Ivanov I.T. // Comp. Biochem. Physiol.(A). Mol. Integr. Physiol. 2007. V. 147. P. 876–884. https://doi.org/10.1016/j.cbpa.2007.02.016
- Shevchenko O.G., Plyusnina S.N. // J. Evol. Biochem. Physiol. 2017. V. 53. P. 298–307. https://doi.org/10.1134/S0022093017040068
- Brzezinska-Slebodzinska E. // Vet. Res. Commun. 2003. V. 27. P. 211–217. https://doi.org/10.1023/A:1023344607691
- Mineo H., Ogita A., Kanayama N., Kawagishi M., Sato E., Yamamoto N., Izawa A.K.M. // Eur. J. Pharmacol. 2013. V. 702. P. 142–148. https://doi.org/10.1016/j.ejphar.2013.01.029
- Miki M., Tamai H., Mino M., Yamamoto Y., Niki E. // Arch. Biochem. Biophys. 1987. V. 258. P. 373–380. https://doi.org/10.1016/0003-9861(87)90358-4
- Jani N., Ziogas J., Angus J.A., Wright C.E. // J. Pharmacol. Toxicol. Methods. 2012. V. 65. P. 142–146. https://doi.org/10.1016/j.vascn.2012.03.006
- Costa R. M., Magalhães A.S., Pereira J.A., Andrade P.B., Valentão P., Carvalho M., Silva B.M. // Food Chem. Toxicol. 2009. V. 47. P. 860–865. https://doi.org/10.1016/j.fct.2009.01.019
- Frassinetti S., Gabriele M., Caltavuturo L., Longo V., Pucci L. // Plant Foods Hum. Nutr. 2015. V. 70. P. 35–41. https://doi.org/10.1007/s11130-014-0453-6
- Afsar T., Razak S., Khan M.R., Mawash S., Almajwal A., Shabir M., Haq I.U. // BMC Complement. Altern. Med. 2016. V. 16. Р. 258. https://doi.org/10.1186/s12906-016-1240-8
- García-Becerra L., Mitjans M., Rivas-Morales C., Verde-Star J., Oranday-Cárdenas A., María P.V. // Food Chem. 2011. V. 194. P. 1081–1088. https://doi.org/10.1016/j.foodchem.2015.08.131
- Zhang L., Santos J.S., Cruz T.M., Marques M.B., do Carmo M.A.V., Azevedo L., Wang Y., Granato D. // Food Res. Int. 2019. V. 125. Р. 108516. https://doi.org/10.1016/j.foodres.2019.108516
- Banerjee A., Kunwar A., Mishra B., Priyadarsini K.I. // Chem. Biol. Interact. 2008. V. 174. P. 134–139. https://doi.org/10.1016/j.cbi.2008.05.009
- Barreca D., Lagana G., Tellone E., Ficarra S., Leuzzi U., Galtieri A., Bellocco E.J. // Membrane Biol. 2009. V. 230. P. 163–171. https://doi.org/10.1007/s00232-009-9197-x
- Qin B., Yang K., Cao R. // J. Chem. 2020. Р. 2786359. https://doi.org/10.1155/2020/2786359
- Jamialahmadi K., Amiri A.H., Zahedipou F., Faraji F., Karim G. // J. Pharmacopuncture. 2022. V. 25. P. 344–353. https://doi.org/10.3831/KPI.2022.25.4.344
- Sen V.D., Sokolova E.M., Neshev N.I., Kulikov A.V., Pliss E.M. // Reactive and Functional Polymers. 2017. V. 111. P. 53–59. https://doi.org/10.1016/j.reactfunctpolym.2016.12.006
- Chen W., Ma J., Gong F., Xi H., Zhan Q., Li X., Wei F., Wu H., Lai F. // Carbohydr. Polym. 2018. V. 200. P. 446–455. https://doi.org/10.1016/j.carbpol.2018.08.007
- Zhang H., Han L., Sun X., Yu Y., Lv C., Lu J. // Int. J. Biol. Macromol. 2022. V. 217. P. 761–774. https://doi.org/10.1016/j.ijbiomac.2022.07.023
- Zheng L., Dong H., Su G., Zhao Q., Zhao M. // Food Chem. 2016. V. 197. P. 807–813. https://doi.org/10.1016/j.foodchem.2015.11.012
- Kim J., Hong V.S., Lee J. // Arch. Pharm. Res. 2014. V. 37. P. 324–331. https://doi.org/10.1007/s12272-013-0189-0
- Jasiewicz B., Babijczuk K., Warzajtis B., Rychlewska U., Starzyk J., Cofta G., Mrуwczynґska L. // Molecules. 2023. V. 28. Р. 708. https://doi.org/10.3390/molecules28020708
- Buravlev E.V., Chukicheva I.Y., Shevchenko O.G., Suponitsky K.Y., Kutchin A.V. // Russ. J. Bioorg. Chem. 2011. V. 37. P. 614–618. https://doi.org/10.1134/S1068162011050049
- Buravlev E.V., Chukicheva I.Y., Sukrusheva O.V., Schevchenko O.G., Kutchin A.V. // Russ. Chem. Bull. 2015. V. 64. P. 1406–1412. https://doi.org/10.1007/s11172-015-1024-1
- Buravlev E.V., Chukicheva I.Y., Shevchenko O.G., Suponitskii K.Y. Kutchin A.V. // Russ. Chem. Bull. 2017. V. 66. P. 91–98. https://doi.org/10.1007/s11172-017-1705-z
- Buravlev E.V., Chukicheva I.Y., Schevchenko O.G., Kutchin A.V. // Russ. Chem. Bull. 2017. V. 66. P. 297–303. https://doi.org/10.1007/s11172-017-1731-x
- Buravlev E.V., Fedorova I.V., Shevchenko O.G. // Russ. Chem. Bull. 2019. V. 68. P. 985–992. https://doi.org/10.1007/s11172-019-2508-1
- Buravlev E.V., Shevchenko O.G. // Russ. Chem. Bull. 2019. V. 68. P. 79–85. https://doi.org/10.1007/s11172-019-2419-1
- Buravlev E.V., Fedorova I.V., Shevchenko O.G., Kutchin A.V. // Russ. Chem. Bull. 2020. V. 69. P. 1573– 1578. https://doi.org/10.1007/s11172-020-2937-x
- Buravlev E.V., Shevchenko O.G. // Russ. Chem. Bull. 2020. V. 69. P. 1971–1978. https://doi.org/10.1007/s11172-020-2987-0
- Buravlev E.V., Shevchenko O.G., Kutchin A.V. // Russ. Chem. Bull. 2021. V. 70. P. 183–190. https://doi.org/10.1007/s11172-021-3075-9
- Buravlev E.V., Shevchenko O.G. // Russ. Chem. Bull. 2022. V. 71. P. 2621–2628. https://doi.org/10.1007/s11172-022-3691-z
- Buravlev E.V., Shevchenko O.G., Kutchin A.V. // Bioorg. Med. Chem. Lett. 2015. V. 25. P. 826–829. https://doi.org/10.1016/j.bmcl.2014.12.075
- Buravlev E.V., Shevchenko O.G., Chukicheva I.Y., Kutchin A.V. // Chem. Papers. 2018. V. 72. P. 201–208. https://doi.org/10.1007/s11696-017-0272-y
- Buravlev E.V., Shevchenko O.G., Anisimov A.A., Suponitsky K.Y. // Eur. J. Med. Chem. 2018. V. 152. P. 10–20. https://doi.org/10.1016/j.ejmech.2018.04.022
- Buravlev E.V., Dvornikova I.A., Shevchenko O.G., Kutchin A.V. // Chem. Biodivers. 2019. V. 16. P. e1900362. https://doi.org/10.1002/cbdv.201900362
- Buravlev E.V., Fedorova I.V., Shevchenko O.G., Kutchin A.V. // Chem. Biodivers. 2019. V. 16. P. e1800637. https://doi.org/10.1002/cbdv.201800637
- Buravlev E.V., Shevchenko O.G., Suponitsky K.Y. // Chem. Biodivers. 2021. V. 18. Р. e2100221. https://doi.org/10.1002/cbdv.202100221
- Buravlev E.V., Shevchenko O.G. // ChemistrySelect. 2022. V. 7. Р. e202202474. https://doi.org/10.1002/slct.202202474
- Buravlev E.V., Shevchenko O.G. // Chem. Papers. 2023. V. 77. P. 6169–6182. https://doi.org/10.1007/s11696-023-02930-0
- Shevchenko O.G., Buravlev E.V. // Russ. Chem. Bull. 2023. V. 72. P. 1972–1990. https://doi.org/10.1007/s11172-023-3991-y
- Chukicheva I.Yu., Fedorova I.V., Nizovtsev N.A., Koroleva A.A., Shevchenko O.G., Kuchin A.V. // Chem. Nat. Compd. 2018. V. 54. P. 875–882. https://doi.org/10.1007/s10600-018-2503-z
- Chukicheva I.Y., Fedorova I.V., Shevchenko O.G., Kuchin A.V. // Russ. Chem. Bull. 2023. V. 72. P. 2215– 2223. https://doi.org/10.1007/s11172-023-4018-4
- Shchukina O.V., Chukicheva I.Y., Kolegova T.A., Kutchin A.V., Shevchenko O.G., Suponitsky K.Y. // Russ. J. Gen. Chem. 2018. V. 88. P. 664–675. https://doi.org/10.1134/S1070363218040096.
- Shchukina O.V., Chukicheva I.Y., Kutchin A.V., Shevchenko O.G. // Russ. J. Bioorg. Chem. 2018. V. 44. P. 787–794. https://doi.org/10.1134/S1068162018050151
- Buravlev E.V., Belykh D.V., Chukicheva I.Y., Tarabukina I.S., Shevchenko O.G., Kutchin A.V. // Russ. J. Bioorg. Chem. 2013. V. 39. P. 434–437. https://doi.org/10.1134/S1068162013040055
- Torlopov M.A., Shevchenko O.G., Chukicheva I.Y., Udoratina E.V. // Reactive and Functional Polymers. 2020. V. 156. P. 104740. https://doi.org/10.1016/j.reactfunctpolym.2020.104740
- Torlopov M.A., Shevchenko O.G., Drozd N.N., Udoratina E.V. // Reactive and Functional Polymers. 2023. V. 182. P. 105457. https://doi.org/10.1016/j.reactfunctpolym.2022.105457
- Chukicheva I.Y., Torlopov M.A., Buravlev E.V., Shevchenko O.G., Kuchin A.V. // Russ. J. Bioorg. Chem. 2014. V. 40. P. 76–81. https://doi.org/10.1134/s1068162014010026
- Martakov I.S., Shevchenko O.G., Torlopov M.A., Gerasimov E.Y., Sitnikov P.A. // J. Inorg. Biochem. 2019. V. 199. P. 110782. https://doi.org/10.1016/j.jinorgbio.2019.110782
- Martakov I.S., Shevchenko O.G. // J. Inorgc. Biochem. 2020. V. 210. P. 111168. https://doi.org/10.1016/j.jinorgbio.2020.111168
- Martakov I.S., Shevchenko O.G., Torlopov M.A., Sitnikov P.A. // J. Mol. Struct. 2022. V. 1248. P. 131471. https://doi.org/10.1016/j.molstruc.2021.131471
- Belykh D.V., Buravlev E.V., Chukicheva I.Yu., Tarabukina I.S., Kutchin A.V., Shevchenko O.G., Plyusnina S.N. // Russ. J. Bioorg. Chem. 2012. V. 38. P. 558–564. https://doi.org/10.1134/S1068162012050044
- Dvornikova I.A., Buravlev E.V., Fedorova I.V., Shevchenko O.G., Chukicheva I.Y., Kutchin A.V. // Russ. Chem. Bull. 2019. V. 68. P. 1000–1005. https://doi.org/10.1007/s11172-019-2510-7
- Popova S.A., Shevchenko O.G., Chukicheva I.Y., Kutchin A.V. // Chem. Biodivers. 2019. V. 16. P. e1800317. https://doi.org/10.1002/cbdv.201800317
- Popova S.A., Shevchenko O.G., Chukicheva I.Y. // Chem. Biolog. Drug Design. 2022. V. 100. P. 994–1004. https://doi.org/10.1111/cbdd.13955
- Samet A.V., Shevchenko O.G., Rusak V.V., Chartov E.M., Myshlyavtsev A., Rusanov D., Semenova M.N., Semenov V.V. // J. Nat. Prod. 2019. V. 82. P. 1451–1458. https://doi.org/10.1021/acs.jnatprod.8b00878
- Nikitina L.E., Lisovskaya S.A., Startseva V.A., Frolova L.L., Kutchin A.V., Shevchenko O.G., Ostolopovskaya O.V., Pavelyev R.S., Khelkhal M.A., Gilfanov I.R., Fedyunina I.V., Khaliullin R.R., Akhverdiev R.F., Gerasimov A.V., Abzaldinova E.V., Izmailov A.G. // Bionanoscience. 2021. V. 11. P. 970–976. https://doi.org/10.1007/s12668-021-00912-8
- Gur'eva Y.A., Zalevskaya O.A., Shevchenko O.G., Slepukhin P.A., Makarov V.A., Kuchin A.V. // RSC Adv. 2022. V. 12. P. 8841–8851. https://doi.org/10.1039/d2ra00223j
- Buravlev E.V., Shevchenko O.G. // Chem. Papers. 2023. V. 77. P. 499–508. https://doi.org/10.1007/s11696-022-02492-7
- Izmest’ev E.S., Sudarikov D.V., Shevchenko O.G., Rubtsova S.A., Kutchin A.V. // Russ. J. Bioorg. Chem. 2015. V. 41. P. 77–82. https://doi.org/10.7868/S0132342314050078
- Pestova S.V., Izmestev E.S., Rubtsova S.A., Shevchenko O.G., Kuchin A.V. // Russ. Chem. Bull. 2015. V. 64. P. 723–731. https://doi.org/10.1007/s11172-015-0926-2
- Pestova S.V., Izmest’ev E.S., Shevchenko O.G., Rubtsova S.A., Kuchin A.V. // Russ. J. Bioorg. Chem. 2017. V. 43. P. 302–310. https://doi.org/10.1134/S1068162017030141
- Gyrdymova Y.V., Sudarikov D.V., Shevchenko O.G., Rubtsova S.A., Kutchin A.V. // Chemistry Biodiversity. 2017. V. 14. P. 1–10. https://doi.org/10.1002/cbdv.201700296
- Gyrdymova Y.V., Demakova M.Y., Shevchenko O.G., Sudarikov D.V., Frolova L.L., Rubtsova S.A., Kuchin A.V. // Chem. Nat. Compd. 2017. V. 53. P. 895–900. https://doi.org/10.1007/s10600-017-2150-9
- Gyrdymova Y.V., Sudarikov D.V., Shevchenko O.G., Rubtsova S.A., Slepukhin P.A., Patov S.A., Lakhvich F.A., Pashkovskii F.S., Kuchin A.V. // Chem. Nat. Compd. 2018. V. 54. P. 883–888. https://doi.org/10.1007/s10600-018-2504-y
- Melekhin А.К., Sudarikov D.V., Shevchenko O.G., Rubtsova S.A., Kuchin A.V. // Chem. Nat. Compd. 2018. V. 54. P. 281–285. https://doi.org/10.1007/s10600-018-2324-0
- Sudarikov D.V., Krymskaya Y.V., Shevchenko O.G., Slepukhin P.A., Rubtsova S.A., Kutchin A.V. // Chemistry Biodiv. 2019. V. 16. P. e1900413. https://doi.org/10.1002/cbdv.201900413
- Sudarikov D.V., Krymskaya Y.V., Melekhin A.K., Shevchenko O.G., Rubtsova S.A. // Chemical Papers. 2021. V. 75. P. 2957–2963. https://doi.org/10.1007/s11696-020-01362-4
- Sudarikov D.V., Gyrdymova Y.V., Borisov A.V., Lukiyanova J.M., Rumyantcev R.V., Shevchenko O.G., Baidamshina D.R., Zakarova N.D., Kayumov A.R., Sinegubova E.O., Volobueva A.S., Zarubaev V.V., Rubtsova S.A. // Molecules. 2022. V. 27. P. 5101. https://doi.org/10.3390/molecules27165101
- Ksenofontov A.A., Bocharov P.S., Antina E.V., Shevchenko O.G., Samorodov A.V., Gilfanov I.R., Pavelyev R.S., Ostolopovskaya O.V., Startseva V.A., Fedyunina I.V., Azizova Z.R., Gaysin S.I., Pestova S.V., Izmestâev E.S., Rubtsova S.A., Khelkhal M.A., Nikitina L.E. // Biomol. 2022. V. 12. P. 1599. https://doi.org/10.3390/biom12111599
- Nikonova N.N., Hurshkainen T.V., Shevchenko O.G., Kuchin A.V. // Holzforschung. 2022. V. 76. Р. 276–284. https://doi.org/10.1515/hf-2021-0122
- Golubev D., Zemskaya N., Shevchenko O., Shaposhnikov M., Kukuman D., Patov S., Punegov V., Moskalev A. // Biogerontology. 2022. V. 23. P. 215– 235. https://doi.org/10.1007/s10522-022-09954-1
- Golubev D., Platonova E., Zemskaya N., Shevchenko O., Shaposhnikov M., Nekrasova P., Patov S., Ibragimova U., Valuisky N., Borisov A., Zhukova X., Sorokina S., Litvinov R., Moskalev A. // Biogerontology. 2023. V. 25. P. 507–528. https://doi.org/10.1007/s10522-023-10083-6
- Platonova E.Yu., Golubev D.A., Zemskaya N.V., Shevchenko O.G., Patov S.A., Shaposhnikov M.V., Moskalev A.A. // Molecular Biology. 2023. V. 57. P. 978–992. https://doi.org/10.1134/S0026893323060134
- Mikhailova D.V., Shevchenko O.G., Golubev D.A., Platonova E.Y., Zemskaya N.V., Shoeva O.Y., Gordeeva E.I., Patov S.A., Shaposhnikov M.V., Khlestkina E.K., Moskalev A.А. // Antioxidants (Basel). 2023. V. 12. P. 2010. https://doi.org/10.3390/antiox12112010
- Yang H.-L., Korivi M., Lin M.-K., Chang H.C.-W., Wu C.-R., Lee M.-S., Chen W.T.-L., Hseu Y.-C. // J. Food Drug Anal. 2017. V. 25. P. 898–907. https://doi.org/10.1016/j.jfda.2016.10.007
- Woźniak M., Mrówczyńska L., Waśkiewicz A., Rogoziński T., Ratajczak I. // Revista Brasileira de Farmacognosia. 2019. V. 29. P. 301–308. https://doi.org/10.1016/j.bjp.2019.02.002
- Sato Y., Kanazawa S., Sato K., Suzuki Y. // Biochemistry. 1995. V. 21. Р. 8940–8949. https://doi.org/10.1248/bpb.21.250
- Halliwell B., Clement M.V., Longa L.H. // FEBS Lett. 2000. V. 486. P. 10–13. https://doi.org/10.1016/s0014-5793(00)02197-9
- Kowalczyk A., Puchała M., Wesołowska K., Serafin E. // Biochim. Biophys. Acta. 2007. V. 1774. P. 86–92. https://doi.org/10.1016/j.bbapap.2006.11.005
- Everse J., Hsia N. // Free Radic. Biol. Med. 1997. V. 22. P. 1075–1099. https://doi.org/10.1016/s0891-5849(96)00499-6
- Rocha S., Costa E., Coimbra S., Nascimento H., Catarino C., Rocha-Pereira P., Quintanilha A., Belo L., Santos-Silva A. // Blood Cells Mol Dis. 2009. V. 43. P. 68–73. https://doi.org/10.1016/j.bcmd.2009.03.002
- Nagababu E., Rifkind J.M. // Biochem. Biophysic. Res. Com. 1998. V. 247. P. 592–596.
- Nagababu E., Fabry M.E., Nagel R.L., Rifkind J.M. // Blood Cells Mol. Dis. 2008. V. 41. P. 60–66. https://doi.org/10.1016/j.bcmd.2007.12.003
- Nagababu E., Mohanty J.G., Bhamidipaty S., Ostera G.R., Rifkind J.M. // Life Sciences. 2010. V. 86. P. 133–138. https://doi.org/10.1016/j.lfs.2009.11.015
- Choudhary O. P., Sarkar R., Priyanka, Chethan G.E., Doley P.J., Kalita P.C., Kalita A. // Ann. Med. Surg. (Lond). 2021. V. 70. Р. 102895. https://doi.org/10.1016/j.amsu.2021.102895
- Takebayashi J., Kaji H., Ichiyama K., Makino K., Gohda E., Yamamoto I., Tai A. // Free Rad. Biol. Med. 2007. V. 43. P. 1156–1164. https://doi.org/10.1016/j.freeradbiomed.2007.07.002
- Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. // World Allergy Organ. J. 2012. V. 5. P. 9–19. https://doi.org/10.1097/WOX.0b013e3182439613
- Hebbel R.P., Leung A., Mohandas N. // Blood. 1990. V. 76. P. 1015–1020.
- Sugihara T., Rawicz W.E.A., Hebbel R.P. // Blood 1991. V. 77. P. 2757–2763.
- Çimen M. // Clin. Chim. Acta. 2008. V. 390. P. 1–11. https://doi.org/10.1016/j.cca.2007.12.025
- Skold A., Cosco D.L., Klein R. // South. Med. J. 2011. V. 104. P. 757–761. https://doi.org/10.1097/SMJ.0b013e318232139f
- Arif A., Salam S., Mahmood R. // Toxicol. In Vitro. 2020. V. 65. Р. 104810. https://doi.org/10.1016/j.tiv.2020.104810
- Park S., Saravanakumar K., Sathiyaseelan A., Park S.J., Hu X., Wang M.-H. // LWT. 2022. V. 154. P. 112727. https://doi.org/10.1016/j.lwt.2021.112727
- Singh S., Singh D.K., Meena A., Dubey V., Masood N., Luqman S. // Phytomedicine. 2019. V. 55. P. 92–104. https://doi.org/10.1016/j.phymed.2018.07.009
- Peng A., Lin L., Zhao M., Sun B. // Food Res. Int. 2019. V. 123. P. 64–74. https://doi.org/10.1016/j.foodres.2019.04.046
- Suwalsky M., Jemiola-Rzeminska M., Astudillo C., Gallardo M.J., Staforelli J.P., Villena F., Strzalka K. // Biochim. Biophys. Acta. 2015. V. 1848. P. 2829–2838. https://doi.org/10.1016/j.bbamem.2015.08.017
- Suwalsky M., Zambrano P., Villena F., Manrique-Moreno M., Gallardo M.J., Jemiola-Rzeminska M., Strzalka K., Edwards A.M., Mennickent S., Dukes N. // J. Membr. Biol. 2015. V. 248. P. 683–693. https://doi.org/10.1007/s00232-015-9780-2
- Suwalsky M., Colina J., Gallardo M.J., JemiolaRzeminska M., Strzalka K., Manrique-Moreno M., Sepúlveda B. // J. Membr. Biol. 2016. V. 249. P. 769– 779. https://doi.org/10.1007/s00232-016-9924-z
- Suwalsky М., Ramírez P., Avello M., Villena F., Gallardo M.J., Barriga A., Manrique-Moreno M. // J. Membr. Biol. 2016. V. 249. P. 349–361. https://doi.org/10.1007/s00232-016-9873-6
- Suwalsky M., Duguet J., Speisky H. // J. Membr. Biol. 2017. V. 250. P. 239–248. https://doi.org/10.1007/s00232-017-9955-0
- Novitskii V.V., Ryazantseva N.V., Semin I.R. // Bull. Exp. Biol. Med. 2000. V. 130. P. 979–982. https://doi.org/10.1023/A:1002870025084
- Sheetz M.P., Singer S.J. // Proc. Natl. Acad. Sci. USA. 1974. V. 71. P. 4457–4461. https://doi.org/10.1073/pnas.71.11.4457
- Luneva O.G., Gendel’ L.Ya., Kuznetsov Yu.V., Smirnov L.D. // Biophysics. 2005. V. 50. P. 294–298.
- Manrique-Moreno M., Suwalsky M., Villena F., Garidel P. // Biophys. Chem. 2010. V. 147. P. 53–58. https://doi.org/10.1016/j.bpc.2009.12.010
- Manrique-Moreno M., Villena F., Sotomayor C.P., Edwards A.M., Muсoz M.A., Garidel P., Suwalskya M. // Biochim. Biophys. Acta. 2011. V. 1808. Р. 2656–2664. https://doi.org/10.1016/j.bbamem.2011.07.005
- Parshina E.Yu., Rubin A.B., Gendel L.Ya. // Biophysics. 2004. V. 49. P. 981–985.
- Parshina E.Yu., Gendel L.Ya., Rubin A.B. // Biol. Bull. 2007. V. 34. P. 537–541. https://doi.org/10.1134/S1062359007060015
- Parshina E.Yu., Gendel L.Ya., Rubin A.B. // Biophysics. 2009. V. 54. P. 706–708. https://doi.org/10.1134/S0006350909060098
- Parshina E.Y., Silicheva M.A., Volod’kin A.A., Gendel L.Y. // Biophysics. 2017. V. 62. P. 754–758. https://doi.org/10.1134/S0006350917050189
- Shevchenko O.G., Plyusnina S.N., Buravlev E.V., Chukicheva I.Y., Fedorova I.V., Shchukina O.V., Kutchin A.V. // Russ. Chem. Bull. 2017. V. 66. P. 1881– 1890. https://doi.org/10.1007/s11172-017-1962-x
- Basiglio C.L., Pozzi E.J.S., Mottino A.D., Roma M.G. // Chem. Biol. Interact. 2009. V. 79. P. 297–303. https://doi.org/10.1016/j.cbi.2008.12.008
- Preté P.S.C., Domingues C.C., Meirelles N.C., Malheiros S.V.P., Goñi F.M., Paula E., Schreier S. // Вiochim. Biophys. Acta. (Biomembr.) 2011. V. 1808. P. 1641–1670. https://doi.org/10.1016/j.bbamem.2010.10.016
- Rodi P.M., Trucco V.M., Gennaro A.M. // Biophys. Chem. 2008. V. 135. P. 14–18. https://doi.org/10.1016/j.bpc.2008.02.015
Arquivos suplementares
