Preparation of Ficin Complexes with Carboxymethylchitosan and N-(2-Hydroxy)propyl-3-Trimethyl Ammonium Chitosan and the Study of Their Structural Features

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chitosan derivatives – сarboxymethyl chitosan and N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan with molecular weights of 200, 350, and 600 kDa have been synthesized. Complexes of ficin with chitosan and its named derivatives have been obtained. IR spectra of chitosan, carboxymethylchitosan, and N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan and their complexes with ficin were recorded. The analysis of the spectra confirmed the formation of conjugates between the macromolecules of polysaccharides and ficin. The optimal ratio of protein content (0.7 mg/g of carrier) and specific activity (1590 units/mg of protein) was found during the complexation of ficin with the N-(2-hydroxy)propyl-3-trimethylammonium chitosan matrix with the molecular weight 350 kDa. The efficiency of ficin complexation (in terms of specific catalytic activity) with N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan (350 kDa) exceeds that of chitosan (350 kDa) and carboxymethylchitosan (350 kDa) 2.4 and 9.8 times respectively. The types of interactions, first binding energies, amino acid composition of ficin surfaces, which interact with the carrier in the process of complexation, were studied by molecular docking. It has been established that bonds and interactions with chitosan and its derivatives are formed, among other things, with the participation of amino acid residues located near the ficin active site (Cys25 and His162), which explains the change in the proteolytic activity of the obtained complexes. Ficin complexes with N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan are soluble in a wide pH range and, therefore, may be more promising than protease-chitosan complexes in the development of medical preparations and biocatalysts for the food, brewing, and leather industries.

About the authors

N. V. Malykhina

Voronezh State University

Email: holyavka@rambler.ru
Russia, 394018, Voronezh, Universitetskaya pl. 1

S. S. Olshannikova

Voronezh State University

Email: holyavka@rambler.ru
Russia, 394018, Voronezh, Universitetskaya pl. 1

M. G. Holyavka

Voronezh State University; Sevastopol State University

Author for correspondence.
Email: holyavka@rambler.ru
Russia, 394018, Voronezh, Universitetskaya pl. 1; Russia, 299053, Sevastopol, ul. Universitetskaya 33

A. V. Sorokin

Voronezh State University; Sevastopol State University

Email: holyavka@rambler.ru
Russia, 394018, Voronezh, Universitetskaya pl. 1; Russia, 299053, Sevastopol, ul. Universitetskaya 33

M. S. Lavlinskaya

Voronezh State University; Sevastopol State University

Email: holyavka@rambler.ru
Russia, 394018, Voronezh, Universitetskaya pl. 1; Russia, 299053, Sevastopol, ul. Universitetskaya 33

V. G. Artyukhov

Voronezh State University

Email: holyavka@rambler.ru
Russia, 394018, Voronezh, Universitetskaya pl. 1

D. A. Faizullin

Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of Russian Academy of Sciencs

Email: holyavka@rambler.ru
Russia, 420111, Kazan, ul. Lobachevskogo 2/31

Yu. F. Zuev

Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of Russian Academy of Sciencs

Email: holyavka@rambler.ru
Russia, 420111, Kazan, ul. Lobachevskogo 2/31

References

  1. Holyavka M., Faizullin D., Koroleva V., Olshannikova S., Zakhartchenko N., Zuev Yu., Kondratyev M., Zakharova E., Artyukhov V. // Int. J. Biol. Macromol. 2021. V. 180. P. 161–176. https://doi.org/10.1016/j.ijbiomac.2021.03.016
  2. Holyavka M.G., Kayumov A.R., Baydamshina D.R., Koroleva V.A., Trizna E.Y., Trushin M.V., Artyukhov V.G. // Int. J. Biol. Macromol. 2018. V. 115. P. 829–834. https://doi.org/10.1016/j.ijbiomac.2018.04.107
  3. Wingard L.B., Berezin I.V., Klyosov A.A. // Enzyme Engineering. Future Directions. New York: Plenum Press, 1980. XIV, 522 p. https://doi.org/10.1007/978-1-4684-3719-5
  4. Efremenko E.N., Lozinsky V.I., Sergeeva V.S., Plieva F.M., Makhlis T.A., Kazankov G.M., Gladilin A.K., Varfolomeyev S.D. // J. Biochem. Biophys. Methods. 2002. V. 51. P. 195–201. https://doi.org/10.1016/S0165-022X(01)00135-X
  5. Efremenko E., Peregudov A., Kildeeva N., Perminov P., Varfolomeyev S. // Biocatalysis and Biotransformation. 2005. V. 23. P. 103–108. https://doi.org/10.1080/10242420500132474
  6. Muronetz V.I., Zhang N.X., Bulatnikov I.G., Wang C.-C. // FEBS Lett. 1998. V. 426. P. 107–110. https://doi.org/10.1016/S0014-5793(98)00319-6
  7. Siar E.-H., Zaak H., Kornecki J.F., Zidoune M.N., Barbosa O., Fernandez-Lafuente R. // Process Biochem. 2017. V. 58. P. 98–104. https://doi.org/10.1016/j.procbio.2017.04.009
  8. Siar E.-H., Morellon-Sterling R., Zidoune M.N., Fernandez-Lafuente R. // Int. J. Biol. Macromol. 2020. V. 144. P. 419–426. https://doi.org/10.1016/j.ijbiomac.2019.12.140
  9. Hayashi T., Hyon S.-H., Cha W.-I., Ikada Y. // Polym. J. 1993. V. 25. P. 489–497. https://doi.org/10.1295/polymj.25.489
  10. Pan Y., Pang Y., Shi Y., Zheng W., Long Y., Huang Y., Zheng H. // Microchim. Acta. 2019. V. 186. P. 213. https://doi.org/10.1007/s00604-019-3331-y
  11. Kulikov S.N., Tikhonov V.E., Bezrodnykh E.A., Lopatin S.A., Varlamov V.P. // Russ. J. Bioorg. Chem. 2015. V. 41. P. 57–62. https://doi.org/10.1134/S1068162015010100
  12. Akpan E.I., Gbenebor O.P., Adeosun S.O., Cletus O. // In Handbook of Chitin and Chitosan. Chapter 5 / Eds. Gopi S., Thomas S., Pius Anitha. Elsevier, 2020. P. 131–164. https://doi.org/10.1016/b978-0-12-817970-3.00005-5
  13. Gregorio C. // Environ. Chem. Lett. 2019. V. 17. P. 1623–1643. https://doi.org/10.1007/s10311-019-00901-0
  14. Prashanth K.V.H., Tharanathan R.N. // Trends in Food Science & Technology. 2007. V. 18. P. 117–131. https://doi.org/10.1016/j.tifs.2006.10.022
  15. Xu I., Du I., Huang R., Gao L. // Biomaterials. 2003. V. 24. P. 5015–5022. https://doi.org/10.1016/s0142-9612(03)00408-3
  16. Trott O., Olson A.J. // J. Comput. Chem. 2010. V. 31. P. 455–461. https://doi.org/10.1002/jcc.21334
  17. Barth A. // Biochim. Biophys. Acta. 2007. V. 1767. P. 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004
  18. Byler D.M., Susi H. // Biopolymers. 1986. V. 25. P. 469–487. https://doi.org/10.1002/bip.360250307
  19. Wang Q.Z., Chen X.G., Liu N., Wang S.X., Liu C.S., Meng X.H., Liu C.G. // Carbohydrate Polymers. 2006. V. 65. P. 194–201. https://doi.org/10.1016/j.carbpol.2006.01.001
  20. Mazancova P., Némethova V., Treľova D., Klescíkova L., Lacik I., Razga F. // Carbohydr. Polym. 2018. V. 192. P. 104–110. https://doi.org/10.1016/j.carbpol.2018.03.030
  21. Wolpert M., Hellwig P. // Spectrochim. Acta Part A: Mol. Biomol. Spectroscopy. 2006. V. 64. P. 987–1001. https://doi.org/10.1016/j.saa.2005.08.025
  22. Yang Y., Xing R., Liu S., Qin Y., Li K., Yu H., Li P. // Carbohydr. Polym. 2019. V. 205. P. 194–201. https://doi.org/10.1016/j.carbpol.2018.10.101
  23. Wang C., Fan J., Xu R., Zhang L., Zhong S., Wang W., Yu D. // J. Mater. Sci. 2019. V. 54. P. 12522–12532. https://doi.org/10.1007/s10853-019-03824-x
  24. Шкутина И.В., Стоянова О.Ф., Селеменев В.Ф., Меркулова Ю.Д. // Сорбционные и хроматографические процессы. 2004. Т. 4. № 4. С. 422–427.
  25. Шкутина И.В., Стоянова О.Ф., Лунина В.В. // Сорбционные и хроматографические процессы. 2009. Т. 9. № 2. С. 247–253.
  26. Chen S.C., Wu Y.C., Mi F.L., Lin Y.H., Yu L.C., Sung H.W. // J. Control. Release. 2004. V. 96. P. 285–300.
  27. Gorshkova M., Volkova I., Alekseeva S., Molotkova N., Skorikova E., Izumrudov V. // Polymer Science Series A. 2011. V. 53. P. 57–66. https://doi.org/10.1134/S0965545X11010019
  28. Abdullatypov A.V., Kondratyev M.S., Holyavka M.G., Artyukhov V.G. // Biophysics. 2016. V. 61. P. 565–571. https://doi.org/10.1134/S0006350916040023
  29. Lowry O.H., Rosebrough N.J., Faar A.L., Randall R.J. // J. Biol. Chem. 1951. V. 193. P. 265–275.
  30. Artyukhov V.G., Kovaleva T.A., Kholyavka M.G., Bityutskaya L.A., Grechkina M.V. // Appl. Biochem. Microbial. 2010. V. 46. P. 422–427. https://doi.org/10.1134/S0003683810040034
  31. Sabirova A.R., Rudakova N.L., Balaban N.P., Ilyinskaya O.N., Demidyuk I.V., Kostrov S.V., Rudenskaya G.N., Sharipova M.R. // FEBS Lett. 2010. V. 584. P. 4419–4425. https://doi.org/10.1016/j.febslet.2010.09.049
  32. Charney J., Tomarelly R.M. // J. Biol. Chem. 1947. V. 171. P. 501–505.
  33. Coelho D.F., Saturnino T.P., Fernandes F.F., Mazzola P.G., Silveira E., Tambourgi E.B. // Biomed. Res. Int. 2016. P. 8409183. https://doi.org/10.1155/2016/8409183

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (118KB)
3.

Download (153KB)
4.

Download (146KB)
5.

Download (194KB)
6.

Download (186KB)
7.

Download (417KB)
8.

Download (425KB)
9.

Download (619KB)

Copyright (c) 2022 Н.В. Малыхина, С.С. Ольшанникова, М.Г. Холявка, А.В. Сорокин, М.С. Лавлинская, В.Г. Артюхов, Д.А. Файзуллин, Ю.Ф. Зуев