Muscarinic and Nicotinic Acetylcholine Receptors in the Regulation of the Cardiovascular System

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Many different receptors and ion channels regulating ion currents are involved in the regulation of the cardiovascular system (CVS). The functioning of the CVS occurs via mechanisms of both nervous and humoral regulation, and in both cases, acetylcholine receptors of different families and subtypes with different localization participate in the regulation processes. It has been shown that acetylcholine receptors are located on the cell membranes directly of the heart and blood vessels; and this review examines the mechanisms of regulation of the functions of the CVS with the participation of only those cholinergic receptors that are located in the tissue of the heart and blood vessels. In general, both muscarinic and nicotinic cholinergic receptors are widely represented in the tissues of the CVS. While muscarinic acetylcholine receptors are generally involved in the regulation of vascular tonus and contractility of the heart, the nicotinic acetylcholine receptors are mainly involved in the regulation of a number of important pathophysiological processes directly affecting the functioning of the CVS. Regulation of the functioning of cholinergic receptors can be considered as an addition to existing methods for the treatment of diseases of the CVS, including such diseases as atherosclerosis and heart failure. The use of blockers and activators of cholinergic receptors for the study and/or treatment of pathological conditions of the CVS is discussed.

作者简介

A. Osipov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Email: utkin@ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

A. Averin

Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences

Email: utkin@ibch.ru
Russia, 142290, Pushchino, ul. Institutskaya 3

E. Shaykhutdinova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch,
Russian Academy of Sciences

Email: utkin@ibch.ru
Russia, 142290, Pushchino, prosp. Nauki 6

I. Dyachenko

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch,
Russian Academy of Sciences

Email: utkin@ibch.ru
Russia, 142290, Pushchino, prosp. Nauki 6

V. Tsetlin

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Email: utkin@ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

Y. Utkin

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

编辑信件的主要联系方式.
Email: utkin@ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

参考

  1. Орлов Р.С., Ноздрачев А.Д. // Нормальная физиология. Глава 23. Сердечно-сосудистая система. Москва: ГЭОТАР-Медиа, 2009. С. 472–526.
  2. Kostenis E., Zeng F.Y., Wess J. // Life Sci. 1999. V. 64. P. 355–362. https://doi.org/10.1016/s0024-3205(98)00574-8
  3. Leach K., Simms J., Sexton P.M., Christopoulos A. // Handb. Exp. Pharmacol. 2012. V. 208. P. 29–48. https://doi.org/10.1007/978-3-642-23274-9_2
  4. Hulme E.C., Birdsall N.J., Buckley N.J. // Annu. Rev. Pharmacol. Toxicol. 1990. V. 30. P. 633–673. https://doi.org/10.1146/annurev.pa.30.040190.003221
  5. Haga K., Kruse A.C., Asada H., Yurugi-Kobayashi T., Shiroishi M., Zhang C., Weis W.I., Okada T., Kobilka B.K., Haga T., Kobayashi T. // Nature. 2012. V. 482. P. 547–551. https://doi.org/10.1038/nature10753
  6. Maeda S., Qu Q., Robertson M.J., Skiniotis G., Kobilka B.K. // Science. 2019. V. 364. P. 552–557. https://doi.org/10.1126/science.aaw5188
  7. Thompson A.J., Lester H.A., Lummis S.C. // Q. Rev. Biophys. 2010. V. 43. P. 449–499. https://doi.org/10.1017/S0033583510000168
  8. Nys M., Kesters D., Ulens C. // Biochem. Pharmacol. 2013. V. 86. P. 1042–1053. https://doi.org/10.1016/j.bcp.2013.07.001
  9. Noviello C.M., Gharpure A., Mukhtasimova N., Cabuco R., Baxter L., Borek D., Sine S.M., Hibbs R.E. // Cell. 2021. V. 184. P. 2121–2134. https://doi.org/10.1016/j.cell.2021.02.049
  10. Oakes J.M., Fuchs R.M., Gardner J.D., Lazartigues E., Yue X. // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018. V. 315. P. R895–R906. https://doi.org/10.1152/ajpregu.00099.2018
  11. Jutkiewicz E.M., Rice K.C., Carroll F.I., Woods J.H. // Drug Alcohol Depend. 2013. V. 131. P. 284–297. https://doi.org/10.1016/j.drugalcdep.2012.12.021
  12. Casado M.A., Marín J., Salaices M. // Naunyn Schmiedebergs Arch. Pharmacol. 1992. V. 346. P. 391–394. https://doi.org/10.1007/BF00171079
  13. Alonso M.J., Arribas S., Marín J., Balfagón G., Salaices M. // Brain Res. 1991. V. 567. P. 76–82. https://doi.org/10.1016/0006-8993(91)91438-7
  14. Deng A.Y., Huot-Marchard J.É., deBlois D., Thorin E., Chauvet C., Menard A. // Can. J. Cardiol. 2019. V. 35. P. 661–670. https://doi.org/10.1016/j.cjca.2018.12.029
  15. Saw E.L., Kakinuma Y., Fronius M., Katare R. // J. Mol. Cell Cardiol. 2018. V. 125. P. 129–139. https://doi.org/10.1016/j.yjmcc.2018.10.013
  16. Saternos H.C., Almarghalani D.A., Gibson H.M., Meqdad M.A., Antypas R.B., Lingireddy A., AbouAlaiwi W.A. // Physiol. Genomics. 2018. V. 50. P. 1–9. https://doi.org/10.1152/physiolgenomics.00062.2017
  17. Harvey R.D. // In: Muscarinic Receptors. Handbook of Experimental Pharmacology. Berlin: Springer, 2012. V. 208. P. 299–316. https://doi.org/10.1007/978-3-642-23274-9_13
  18. Brodde O.E., Michel M.C. // Pharmacol. Rev. 1999. V. 51. P. 651–690.
  19. Harvey R.D., Belevych A.E. // Br. J. Pharmacol. 2003. V. 139. P. 1074–1084. https://doi.org/10.1038/sj.bjp.0705338
  20. Sterin-Borda L., Echagüe A.V., Leiros C.P., Genaro A., Borda E. // Br. J. Pharmacol. 1995. V. 115. P. 1525–1531. https://doi.org/10.1111/j.1476-5381.1995.tb16646.x
  21. Wang Y.G., Rechenmacher C.E., Lipsius S.L. // J. Gen. Physiol. 1998. V. 111. P. 113–125. https://doi.org/10.1085/jgp.111.1.113
  22. Navarro-Polanco R.A., Moreno Galindo E.G., Ferrer-Villada T., Arias M., Rigby J.R., Sanchez-Chapula J.A., Tristani-Firouzi M. // J. Physiol. 2011. V. 589. P. 1741–1753. https://doi.org/10.1113/jphysiol.2010.204107
  23. Moss R., Sachse F.B., Moreno-Galindo E.G., Navarro-Polanco R.A., Tristani-Firouzi M., Seemann G. // PLoS Comput. Biol. 2018. V. 14. P. e1006438. https://doi.org/10.1371/journal.pcbi.1006438
  24. Wang H., Lu Y., Wang Z. // Auton. Autacoid Pharmacol. 2007. V. 27. P. 1–11. https://doi.org/10.1111/j.1474-8673.2006.00381.x
  25. Patanè S. // Int. J. Cardiol. 2014. V. 177. P. 646–649. https://doi.org/10.1016/j.ijcard.2014.09.178
  26. Wang H., Han H., Zhang L., Shi H., Schram G., Nattel S., Wang Z. // Mol. Pharmacol. 2001. V. 59. P. 1029–1036. https://doi.org/10.1124/mol.59.5.1029
  27. Wang Z., Shi H., Wang H. // Br. J. Pharmacol. 2004. V. 142. P. 395–408. https://doi.org/10.1038/sj.bjp.0705787
  28. Lymperopoulos A., Cora N., Maning J., Brill A.R., Sizova A. // FEBS J. 2021. V. 288. P. 2645–2659. https://doi.org/10.1111/febs.15771
  29. Abramochkin D.V., Tapilina S.V., Sukhova G.S., Nikolsky E.E., Nurullin L.F. // Pflugers Arch. 2012. V. 463. P. 523–529. https://doi.org/10.1007/s00424-012-1075-1
  30. Pérez C.C.N., Tobar I.D.B., Jiménez E., Castañeda D., Rivero M.B., Concepción J.L., Chiurillo M.A., Bonfante-Cabarcas R. // Pharmacol. Res. 2006. V. 54. P. 345–355. https://doi.org/10.1016/j.phrs.2006.07.001
  31. Heijman J., Kirchner D., Kunze F., Chrétien E.M., Michel-Reher M.B., Voigt N., Knaut M., Michel M.C., Ravens U., Dobrev D. // Int. J. Cardiol. 2018. V. 255. P. 61–68. https://doi.org/10.1016/j.ijcard.2017.12.050
  32. Poller U., Nedelka G., Radke J., Pönicke K., Brodde O.E. // J. Am. Coll. Cardiol. 1997. V. 29. P. 187–193. https://doi.org/10.1016/s0735-1097(96)00437-8
  33. Shi H., Wang H., Wang Z. // Mol. Pharmacol. 1999. V. 55. P. 497–507.
  34. Коваленко Н.Я., Мациевский Д.Д., Решетняк В.К. // Патологическая физиология и экспериментальная терапия. 2013. Т. 57. № 3. С. 23–26.
  35. Krejcí A., Tucek S. // Mol. Pharmacol. 2002. V. 61. P. 1267–1272. https://doi.org/10.1124/mol.61.6.1267
  36. Dvorakova M., Lips K.S., Brüggmann D., Slavikova J., Kuncova J., Kummer W. // Cell Tissue Res. 2005. V. 319. P. 201–209. https://doi.org/10.1007/s00441-004-1008-1
  37. Li D.L., Liu B.H., Sun L., Zhao M., He X., Yu X.J., Zang W.J. // Clin. Exp. Pharmacol. Physiol. 2010. V. 37. P. 1114–1119. https://doi.org/10.1111/j.1440-1681.2010.05448.x
  38. Li P., Yan Y., Shi Y., Cheng B., Zhan Y., Wang Q., Ye Q., Weng Y., Wu T., Wu R. // Oxid. Med. Cell Longev. 2019. V. 2019. P. e.9496419. https://doi.org/10.1155/2019/9496419
  39. Bucerius J., Joe A.Y., Schmaljohann J., Gündisch D., Minnerop M., Biersack H.J., Wüllner U., Reinhardt M.J. // Clin. Res. Cardiol. 2006. V. 95. P. 105–109. https://doi.org/10.1007/s00392-006-0342-6
  40. Brasch H., Iven H.B., Zetler G. // Naunyn-Schmiedeberg’s Arch. Pharmacol. 1977. V. 299. P. 259–265. https://doi.org/10.1007/BF00500318
  41. Fenton R.A., Dobson J.G. // Am. J. Physiol. 1985. V. 49. P. H463–H469. https://doi.org/10.1152/ajpheart.1985.249.3.H463
  42. Nakatani T., Nakashima T., Satoh H. // Gen. Pharmacol. 1994. V. 25. P. 865–873. https://doi.org/10.1016/0306-3623(94)90088-4
  43. Malińska D., Więckowski M.R., Michalska B., Drabik K., Prill M., Patalas-Krawczyk P., Walczak J., Szymański J., Mathis C., Van der Toorn M., Luettich K., Hoeng J., Peitsch M.C., Duszyński J., Szczepanowska J. // J. Bioenerg. Biomembr. 2019. V. 51. P. 259–276. https://doi.org/10.1007/s10863-019-09800-z
  44. Katare R.G., Ando M., Kakinuma Y., Arikawa M., Handa T., Yamasaki F., Sato T. // J. Thorac. Cardiovasc. Surg. 2009. V. 137. P. 223–231. https://doi.org/10.1016/j.jtcvs.2008.08.020
  45. Calvillo L., Vanoli E., Andreoli E., Besana A., Omodeo E., Gnecchi M., Zerbi P., Vago G., Busca G., Schwartz P.J. // J. Cardiovasc. Pharmacol. 2011. V. 58. P. 500–507. https://doi.org/10.1097/FJC.0b013e31822b7204
  46. Li M., Zheng C., Sato T., Kawada T., Sugimachi M., Sunagawa K. // Circulation. 2004. V. 109. P. 120–124. https://doi.org/10.1161/01.CIR.0000105721.71640.DA
  47. Sun J., Lu Y., Huang Y., Wugeti N. // Int. J. Clin. Exp. Med. 2015. V. 8. P. 9334–9340.
  48. Shinlapawittayatorn K., Chinda K., Palee S., Surinkaew S., Thunsiri K., Weerateerangkul P., Chattipakorn S., Ken-Knight B.H., Chattipakorn N.N. // Heart Rhythm. 2013. V. 10. P. 1700–1707. https://doi.org/10.1016/j.hrthm.2013.08.009
  49. Zhao M., He X., Bi X.Y., Yu X.J., Gil Wier W., Zang W.J. // Basic Res. Cardiol. 2013. V. 108. P. 345. https://doi.org/10.1007/s00395-013-0345-1
  50. Xue R.Q., Sun L., Yu X.J., Li D.L., Zang W.J. // J. Cell Mol. Med. 2017. V. 21. P. 58–71. https://doi.org/10.1111/jcmm.12938
  51. Intachai K., Chattipakorn S.C., Chattipakorn N., Shinlapawittayatorn K. // Int. J. Mol. Sci. 2018. V. 19. P. 2466. https://doi.org/10.3390/ijms19092466
  52. Liu L., Zhao M., Yu X., Zang W. // Neurosci. Bull. 2019. V. 35. P. 156–166. https://doi.org/10.1007/s12264-018-0286-7
  53. Li D.L., Liu J.J., Liu B.H., Hu H., Sun L., Miao Y., Xu H.F., Yu X.J., Ma X., Ren J., Zang W.J. // J. Cell Physiol. 2011. V. 226. P. 1052–1059. https://doi.org/10.1002/jcp.22424
  54. Miao Y., Zhou J., Zhao M., Liu J., Sun L., Yu X., He X., Pan X., Zang W. // Cell Physiol. Biochem. 2013. V. 31. P. 189–198. https://doi.org/10.1159/000343360
  55. Hang P.Z., Zhao J., Qi J.C., Wang Y., Wu J.W., Du Z.M. // Curr. Drug Targets. 2013. V. 14. P. 372–377.
  56. Liu Y., Wang S., Wang C., Song H., Han H., Hang P., Jiang Y., Wei L., Huo R., Sun L., Gao X., Lu Y., Du Z. // J. Transl. Med. 2013. V. 11. P. 209. https://doi.org/10.1186/1479-5876-11-209
  57. Lu X.Z., Bi X.Y., He X., Zhao M., Xu M., Yu X.J., Zhao Z.H., Zang W.J. // Br. J. Pharmacol. 2015. V. 172. P. 5619–5633. https://doi.org/10.1111/bph.13183
  58. Liu Y., Sun L., Pan Z., Bai Y., Wang N., Zhao J., Xu C., Li Z., Li B., Du Z., Lu Y., Gao X., Yang B. // Mol. Med. 2011. V. 17. P. 1179–1187. https://doi.org/10.2119/molmed.2011.00093
  59. Mavropoulos S.A., Khan N.S., Levy A.C.J., Faliks B.T., Sison C.P., Pavlov V.A., Zhang Y., Ojamaa K. // Mol. Med. 2017. V. 23. P. 120–133. https://doi.org/10.2119/molmed.2017.00091
  60. Monassier J.P. // Arch. Cardiovasc. Dis. 2008. V. 101. P. 491–500. https://doi.org/10.1016/j.acvd.2008.06.014
  61. Dhalla N.S., Golfman L., Takeda S., Takeda N., Nagano M. // Can. J. Cardiol. 1999. V. 15. P. 587–593.
  62. Palee S., Apaijai N., Shinlapawittayatorn K., Chattipakorn S.C., Chattipakorn N. // Cell Physiol. Biochem. 2016. V. 39. P. 341–349. https://doi.org/10.1159/000445628
  63. Prathumsap N., Ongnok B., Khuanjing T., Arinno A., Maneechote C., Apaijai N., Chunchai T., Arunsak B., Shinlapawittayatorn K., Chattipakorn S.C., Chattipakorn N. // Transl. Res. 2022. V. 243. P. 33–51. https://doi.org/10.1016/j.trsl.2021.12.005
  64. Xing R., Cheng X., Qi Y., Tian X., Yan C., Liu D., Han Y. // Biochem. Biophys. Res. Commun. 2020. V. 522. P. 1015–1021. https://doi.org/10.1016/j.bbrc.2019.11.086
  65. Wang S., Han H.M., Jiang Y.N., Wang C., Song H.X., Pan Z.Y., Fan K., Du J., Fan Y.H., Du Z.M., Liu Y. // Clin. Exp. Pharmacol. Physiol. 2012. V. 39. P. 343–349. https://doi.org/10.1111/j.1440-1681.2012.05672.x
  66. Liu Y., Sun H.L., Li D.L., Wang L.Y., Gao Y., Wang Y.P., Du Z.M., Lu Y.J., Yang B.F. // Can. J. Physiol. Pharmacol. 2008. V. 86. P. 860–865. https://doi.org/10.1139/Y08-094
  67. Wang S., Han H.M., Pan Z.W., Hang P.Z., Sun L.H., Jiang Y.N., Song H.X., Du Z.M., Liu Y. // Naunyn-Schmiedeberg’s Arch. Pharmacol. 2012. V. 385. P. 823–831. https://doi.org/10.1007/s00210-012-0740-4
  68. Zhao Y., Wang C., Wu J., Wang Y., Zhu W., Zhang Y., Du Z. // Int. J. Biol. Sci. 2013. V. 9. P. 295–302. https://doi.org/10.7150/ijbs.5976
  69. Zhao J., Su Y., Zhang Y., Pan Z., Yang L., Chen X., Liu Y., Lu Y., Du Z., Yang B. // Br. J. Pharmacol. 2010. V. 159. P. 1217–1225. https://doi.org/10.1111/j.1476-5381.2009.00606.x
  70. Liu L., Lu Y., Bi X., Xu M., Yu X., Xue R., He X., Zang W. // Sci. Rep. 2017. V. 7. P. 42553. https://doi.org/10.1038/srep42553
  71. Zhao L., Chen T., Hang P., Li W., Guo J., Pan Y., Du J., Zheng Y., Du Z. // Front. Pharmacol. 2019. V. 10. P. 1386. https://doi.org/10.3389/fphar.2019.01386
  72. Hernandez C.C., Nascimento J.H., Chaves E.A., Costa P.C., Masuda M.O., Kurtenbach E., Campos D.E., Carvalho A.C., Gimenez L.E. // J. Recept. Signal Transduct. Res. 2008. V. 28. P. 375–401. https://doi.org/10.1080/10799890802262319
  73. Liao F., Zheng Y., Cai J., Fan J., Wang J., Yang J., Cui Q., Xu G., Tang C., Geng B. // Sci. Rep. 2015. V. 16. P. 16590. https://doi.org/10.1038/srep16590
  74. Walch L., Brink C., Norel X. // Therapie. 2001. V. 56. P. 223–226.
  75. Radu B.M., Osculati A.M.M., Suku E., Banciu A., Tsenov G., Merigo F., Di Chio M., Banciu D.D., Tognoli C., Kacer P., Giorgetti A., Radu M., Bertini G., Fabene P.F. // Sci. Rep. 2017. V. 7. P. 5083. https://doi.org/10.1038/s41598-017-05384-z
  76. Eglen R.M., Hegde S.S., Watson N. // Pharmacol. Rev. 1996. V. 48. P. 531–565.
  77. Konidala S., Gutterman D.D. // Prog. Cardiovasc. Dis. 2004. V. 46. P. 349–373. https://doi.org/10.1016/j.pcad.2003.10.001
  78. Walch L., Norel X., Leconte B., Gascard J.P., Brink C. // Therapie. 1999. V. 54. P. 99–102.
  79. Pesić S., Grbović L., Jovanović A. // Pharmacology. 2002. V. 64. P. 182–188. https://doi.org/10.1159/000056169
  80. Norel X., Walch L., Costantino M., Labat C., Gorenne I., Dulmet E., Rossi F., Brink C. // Br. J. Pharmacol. 1996. V. 119. P. 149–157. https://doi.org/10.1111/j.1476-5381.1996.tb15688.x
  81. Tangsucharit P., Takatori S., Zamami Y., Goda M., Pakdeechote P., Kawasaki H., Takayama F. // J. Pharmacol. Sci. 2016. V. 130. P. 24–32. https://doi.org/10.1016/j.jphs.2015.12.005
  82. Dauphin F., Ting V., Payette P., Dennis M., Hamel E. // Eur. J. Pharmacol. 1991. V. 207. P. 319–327. https://doi.org/10.1016/0922-4106(91)90006-4
  83. O’Rourke S.T., Vanhoutte P.M. // J. Pharmacol. Exp. Ther. 1987. V. 241. P. 64–67.
  84. Shimizu T., Rosenblum W.I., Nelson G.H. // Am. J. Physiol. 1993. V. 264. P. H665–H669. https://doi.org/10.1152/ajpheart.1993.264.3.H665
  85. Pujol Lereis V.A., Hita F.J., Gobbi M.D., Verdi M.G., Rodriguez M.C., Rothlin R.P. // Br. J. Pharmacol. 2006. V. 147. P. 516–523. https://doi.org/10.1038/sj.bjp.0706654
  86. Ahmed M., VanPatten S., Lakshminrusimha S., Patel H., Coleman T.R., Al-Abed Y. // Physiol. Rep. 2016. V. 4. P. e13069. https://doi.org/10.14814/phy2.13069
  87. Евлахов В.И., Березина Т.П., Поясов И.З., Овсянников В.И. // Бюлл. эксперим. биол. мед. 2021. Т. 171. № 2. С. 159–163. https://doi.org/10.47056/0365-9615-2021-171-2-159-163
  88. Lung M.A. // Am. J. Rhinol. Allergy. 2011. V. 25. P. e60–e65. https://doi.org/10.2500/ajra.2011.25.3604
  89. Niihashi M., Esumi M., Kusumi Y., Sato Y., Sakurai I. // Angiology. 2000. V. 51. P. 295–300. https://doi.org/10.1177/000331970005100404
  90. Bény J.L., Nguyen M.N., Marino M., Matsui M. // J. Cardiovasc. Pharmacol. 2008. V. 51. P. 505–512. https://doi.org/10.1097/FJC.0b013e31816d5f2f
  91. Dauphin F., Hamel E. // Eur. J. Pharmacol. 1990. V. 178. P. 203–213. https://doi.org/10.1016/0014-2999(90)90476-M
  92. Gericke A., Steege A., Manicam C., Böhmer T., Wess J., Pfeiffer N. // Invest. Ophthalmol. Vis. Sci. 2014. V. 55. P. 625–631. https://doi.org/10.1167/iovs.13-13549
  93. Duckles S.P., Garcia-Villalon A.L. // J. Pharmacol. Exp. Ther. 1990. V. 253. P. 608–613.
  94. Jaiswal N., Lambrecht G., Mutschler E., Tacke R., Malik K.U. // J. Pharmacol. Exp. Ther. 1991. V. 258. P. 842–850.
  95. Коваленко Н.Я., Мациевский Д.Д., Решетняк В.К. // Бюлл. эксперим. биол. мед. 2013. Т. 156. № 12. С. 697–700.
  96. Yamada M., Lamping K.G., Duttaroy A., Zhang W., Cui Y., Bymaster F.P., McKinzie D.L., Felder C.C., Deng C.X., Faraci F.M., Wess J. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 14096–14101. https://doi.org/10.1073/pnas.251542998
  97. Zuccolo E., Laforenza U., Negri S., Botta L., Berra-Romani R., Faris P., Scarpellino G., Forcaia G., Pellavio G., Sancini G., Moccia F. // J. Cell. Physiol. 2019. V. 234. P. 4540–4562. https://doi.org/10.1002/jcp.27234
  98. Gericke A., Sniatecki J.J., Mayer V.G., Goloborodko E., Patzak A., Wess J., Pfeiffer N. // Am. J. Physiol. Heart Circ. Physiol. 2011. V. 300. P. H1602–H1608. https://doi.org/10.1152/ajpheart.00982.2010
  99. Conti-Fine B.M., Navaneetham D., Lei S., Maus A.D.J. // Eur. J. Pharmacol. 2000. V. 393. P. 279–294. https://doi.org/10.1016/S0014-2999(00)00036-34
  100. Heeschen C., Weis M., Aicher A., Dimmeler S., Cooke J.P. // J. Clin. Invest. 2002. V. 110. P. 527–536. https://doi.org/10.1172/JCI14676
  101. Brüggmann D., Lips K.S., Pfeil U., Haberberger R.V., Kummer W. // Histochem. Cell. Biol. 2002. V. 118. P. 441–447. https://doi.org/10.1007/s00418-002-0475-2
  102. Brüggmann D., Lips K.S., Pfeil U., Haberberger R.V., Kummer W. // Life Sci. 2003. V. 72. P. 2095–2099. https://doi.org/10.1016/s0024-3205(03)00067-5
  103. Wada T., Naito M., Kenmochi H., Tsuneki H., Sasaoka T. // Endocr. Rev. 2007. V. 148. P. 790–799. https://doi.org/10.1210/en.2006-0907
  104. Li D.-J., Zhao T., Xin R.-J., Wang Y.-Y., Fei Y.-B., Shen F.-M. // Cell. Physiol. Biochem. 2014. V. 33. P. 468–478. https://doi.org/10.1159/000358627
  105. Clifford P.M., Siu G., Kosciuk M., Levin E.C., Venkataraman V., D’Andrea M.R., Nagele R.G. // Brain Res. 2008. V. 1234. P. 158–171. https://doi.org/10.1016/j.brainres.2008.07.092
  106. Lips K.S., Bruggmann D., Pfeil U., Vollerthun R., Grando S.A., Kummer W. // Placenta. 2005. V. 26. P. 735–746. https://doi.org/10.1016/j.placenta.2004.10.009
  107. Gotti C., Clementi F. // Prog. Neurobiol. 2004. V. 74. P. 363–396. https://doi.org/10.1016/j.pneurobio.2004.09.006
  108. Egleton R.D., Brown K.C., Dasgupta P. // Pharmacol. Ther. 2009. V. 121. P. 205–223. https://doi.org/10.1016/j.pharmthera.2008.10.007
  109. Cooke J.P., Bitterman H. // Ann. Med. 2004. V. 36. P. 33–40. https://doi.org/10.1080/07853890310017576
  110. Macklin K.D., Maus A.D., Pereira E.F., Albuquerque E.X., Conti-Fine B.M. // J. Pharmacol. Exp. Ther. 1998. V. 287. P. 435–439.
  111. Moccia F., Frost C., Berra-Romani R., Tanzi F., Adams D.J. // Am. J. Physiol. Heart. Circ. Physiol. 2004. V. 286. P. H486–H491. https://doi.org/10.1152/ajpheart.00620.2003
  112. Bucerius J., Manka C., Schmaljohann J., Mani V., Gündisch D., Rudd J.H., Bippus R., Mottaghy F.M., Wüllner U., Fayad Z.A., Biersack H.J. // JACC Cardiovasc. Imaging. 2012. V. 5. P. 528–536. https://doi.org/10.1016/j.jcmg.2011.11.024
  113. Zou Q., Leung S.W., Vanhoutte P.M. // J. Pharmacol. Exp. Ther. 2012. V. 341. P. 756–763. https://doi.org/10.1124/jpet.112.192229
  114. Cooke J.P., Ghebremariam Y.T. // Trends Cardiovasc. Med. 2008. V. 18. P. 247–253. https://doi.org/10.1016/j.tcm.2008.11.007
  115. Wu J.C.F., Chruscinski A., Perez V.A.D.J., Singh H., Pitsiouni M., Rabinovitch M., Utz P.J., Cooke J.P. // J. Cell. Biochem. 2009. V. 446. P. 433–446. https://doi.org/10.1002/jcb.22270
  116. Li D.-J., Huang F., Ni M., Fu H., Zhang L.-S., Shen F.-M. // Arterioscler. Thromb. Vasc. Biol. 2016. V. 36. P. 1566–1576. https://doi.org/10.1161/ATVBAHA.116.307157
  117. Liu L., Wu H., Cao Q., Guo Z., Ren A., Dai Q. // Mediators Inflamm. 2017. V. 2017. P. 2401027. https://doi.org/10.1155/2017/2401027
  118. Li X., Wang H. // Life Sci. 2006. V. 78. P. 1863–1870. https://doi.org/10.1016/j.lfs.2005.08.031
  119. Peña V.B., Bonini I.C., Antollini S.S., Kobayashi T., Barrantes F.J. // J. Cell. Biochem. 2011. V. 112. P. 3276–3288. https://doi.org/10.1002/jcb.23254
  120. Whitehead A.K., Erwin A.P., Yue X. // Acta Physiol. (Oxf). 2021. V. 231. P. e13631. https://doi.org/10.1111/apha.13631
  121. Centner A.M., Bhide P.G., Salazar G. // Cells. 2020. V. 9. P. 1035. https://doi.org/10.3390/cells9041035
  122. Li Z.Z., Dai Q.Y. // Mediators Inflamm. 2012. V. 2012. P. 103120. https://doi.org/10.1155/2012/103120
  123. Gaemperli O., Liga R., Bhamra-Ariza P., Rimoldi O. // Curr. Pharm. Des. 2010. V. 16. P. 2586–2597. https://doi.org/10.2174/138161210792062894
  124. Cooke J.P. // Life Sci. 2007. V. 80. P. 2347–2351. https://doi.org/10.1016/j.lfs.2007.01.061
  125. Boswijk E., Bauwens M., Mottaghy F.M., Wildberger J.E., Bucerius J. // Methods. 2017. V. 130. P. 90–104. https://doi.org/10.1016/j.ymeth.2017.06.008
  126. Vazquez-Padron R.I., Mateu D., Rodriguez-Menocal L., Wei Y., Webster K.A., Pham S.M. // Cardiovasc. Res. 2010. V. 88. P. 296–303. https://doi.org/10.1093/cvr/cvq213
  127. Vieira-Alves I., Coimbra-Campos L.M.C., Sancho M., da Silva R.F., Cortes S.F., Lemos V.S. // Front Physiol. 2020. V. 11. P. 621769. https://doi.org/10.3389/fphys.2020.621769
  128. Libby P., Buring J. E., Badimon L., Hansson G.K., Deanfield J., Bittencourt S., Tokgözoğlu L., Lewis E.F. // Nat. Rev. Dis. Primers. 2019. V. 5. P. 56. https://doi.org/10.1038/s41572-019-0106-z
  129. Santanam N., Thornhill B.A., Lau J.K., Crabtree C.M., Cook C.R., Brown K.C., Dasgupta P. // Atherosclerosis. 2012. V. 225. P. 264–273. https://doi.org/10.1016/j.atherosclerosis.2012.07.041
  130. Lee J., Cooke J.P. // Atherosclerosis. 2011. V. 215. P. 281–283. https://doi.org/10.1016/j.atherosclerosis.2011.01.003
  131. Zhang G., Marshall A.L., Thomas A.L, Kernan K.A., Su Y., LeBoeuf R.C., Dong X.R., Tchao B.N. // Atherosclerosis. 2011. V. 215. P. 34–42. https://doi.org/10.1016/j.atherosclerosis.2010.07.057
  132. Brown K.C., Lau J.K., Dom A.M., Witte T.R., Luo H., Crabtree C.M., Shah Y.H., Shiflett B.S., Marcelo A.J., Proper N.A., Hardman W.E., Egleton R.D., Chen Y.C., Mangiarua E.I., Dasgupta P. // Angiogenesis. 2012. V. 15. P. 99–114. https://doi.org/10.1007/s10456-011-9246-9

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)

版权所有 © А.В. Осипов, А.С. Аверин, Э.Р. Шайхутдинова, И.А. Дьяченко, В.И. Цетлин, Ю.Н. Уткин, 2023