Muscarinic and Nicotinic Acetylcholine Receptors in the Regulation of the Cardiovascular System
- 作者: Osipov A.V.1, Averin A.S.2, Shaykhutdinova E.R.3, Dyachenko I.A.3, Tsetlin V.I.1, Utkin Y.N.1
-
隶属关系:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch, Russian Academy of Sciences
- 期: 卷 49, 编号 1 (2023)
- 页面: 3-22
- 栏目: Articles
- URL: https://archivog.com/0132-3423/article/view/670682
- DOI: https://doi.org/10.31857/S0132342323010219
- EDN: https://elibrary.ru/GGQIOX
- ID: 670682
如何引用文章
详细
Many different receptors and ion channels regulating ion currents are involved in the regulation of the cardiovascular system (CVS). The functioning of the CVS occurs via mechanisms of both nervous and humoral regulation, and in both cases, acetylcholine receptors of different families and subtypes with different localization participate in the regulation processes. It has been shown that acetylcholine receptors are located on the cell membranes directly of the heart and blood vessels; and this review examines the mechanisms of regulation of the functions of the CVS with the participation of only those cholinergic receptors that are located in the tissue of the heart and blood vessels. In general, both muscarinic and nicotinic cholinergic receptors are widely represented in the tissues of the CVS. While muscarinic acetylcholine receptors are generally involved in the regulation of vascular tonus and contractility of the heart, the nicotinic acetylcholine receptors are mainly involved in the regulation of a number of important pathophysiological processes directly affecting the functioning of the CVS. Regulation of the functioning of cholinergic receptors can be considered as an addition to existing methods for the treatment of diseases of the CVS, including such diseases as atherosclerosis and heart failure. The use of blockers and activators of cholinergic receptors for the study and/or treatment of pathological conditions of the CVS is discussed.
作者简介
A. Osipov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences
Email: utkin@ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
A. Averin
Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences
Email: utkin@ibch.ru
Russia, 142290, Pushchino, ul. Institutskaya 3
E. Shaykhutdinova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch,Russian Academy of Sciences
Email: utkin@ibch.ru
Russia, 142290, Pushchino, prosp. Nauki 6
I. Dyachenko
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch,Russian Academy of Sciences
Email: utkin@ibch.ru
Russia, 142290, Pushchino, prosp. Nauki 6
V. Tsetlin
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences
Email: utkin@ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
Y. Utkin
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences
编辑信件的主要联系方式.
Email: utkin@ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
参考
- Орлов Р.С., Ноздрачев А.Д. // Нормальная физиология. Глава 23. Сердечно-сосудистая система. Москва: ГЭОТАР-Медиа, 2009. С. 472–526.
- Kostenis E., Zeng F.Y., Wess J. // Life Sci. 1999. V. 64. P. 355–362. https://doi.org/10.1016/s0024-3205(98)00574-8
- Leach K., Simms J., Sexton P.M., Christopoulos A. // Handb. Exp. Pharmacol. 2012. V. 208. P. 29–48. https://doi.org/10.1007/978-3-642-23274-9_2
- Hulme E.C., Birdsall N.J., Buckley N.J. // Annu. Rev. Pharmacol. Toxicol. 1990. V. 30. P. 633–673. https://doi.org/10.1146/annurev.pa.30.040190.003221
- Haga K., Kruse A.C., Asada H., Yurugi-Kobayashi T., Shiroishi M., Zhang C., Weis W.I., Okada T., Kobilka B.K., Haga T., Kobayashi T. // Nature. 2012. V. 482. P. 547–551. https://doi.org/10.1038/nature10753
- Maeda S., Qu Q., Robertson M.J., Skiniotis G., Kobilka B.K. // Science. 2019. V. 364. P. 552–557. https://doi.org/10.1126/science.aaw5188
- Thompson A.J., Lester H.A., Lummis S.C. // Q. Rev. Biophys. 2010. V. 43. P. 449–499. https://doi.org/10.1017/S0033583510000168
- Nys M., Kesters D., Ulens C. // Biochem. Pharmacol. 2013. V. 86. P. 1042–1053. https://doi.org/10.1016/j.bcp.2013.07.001
- Noviello C.M., Gharpure A., Mukhtasimova N., Cabuco R., Baxter L., Borek D., Sine S.M., Hibbs R.E. // Cell. 2021. V. 184. P. 2121–2134. https://doi.org/10.1016/j.cell.2021.02.049
- Oakes J.M., Fuchs R.M., Gardner J.D., Lazartigues E., Yue X. // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018. V. 315. P. R895–R906. https://doi.org/10.1152/ajpregu.00099.2018
- Jutkiewicz E.M., Rice K.C., Carroll F.I., Woods J.H. // Drug Alcohol Depend. 2013. V. 131. P. 284–297. https://doi.org/10.1016/j.drugalcdep.2012.12.021
- Casado M.A., Marín J., Salaices M. // Naunyn Schmiedebergs Arch. Pharmacol. 1992. V. 346. P. 391–394. https://doi.org/10.1007/BF00171079
- Alonso M.J., Arribas S., Marín J., Balfagón G., Salaices M. // Brain Res. 1991. V. 567. P. 76–82. https://doi.org/10.1016/0006-8993(91)91438-7
- Deng A.Y., Huot-Marchard J.É., deBlois D., Thorin E., Chauvet C., Menard A. // Can. J. Cardiol. 2019. V. 35. P. 661–670. https://doi.org/10.1016/j.cjca.2018.12.029
- Saw E.L., Kakinuma Y., Fronius M., Katare R. // J. Mol. Cell Cardiol. 2018. V. 125. P. 129–139. https://doi.org/10.1016/j.yjmcc.2018.10.013
- Saternos H.C., Almarghalani D.A., Gibson H.M., Meqdad M.A., Antypas R.B., Lingireddy A., AbouAlaiwi W.A. // Physiol. Genomics. 2018. V. 50. P. 1–9. https://doi.org/10.1152/physiolgenomics.00062.2017
- Harvey R.D. // In: Muscarinic Receptors. Handbook of Experimental Pharmacology. Berlin: Springer, 2012. V. 208. P. 299–316. https://doi.org/10.1007/978-3-642-23274-9_13
- Brodde O.E., Michel M.C. // Pharmacol. Rev. 1999. V. 51. P. 651–690.
- Harvey R.D., Belevych A.E. // Br. J. Pharmacol. 2003. V. 139. P. 1074–1084. https://doi.org/10.1038/sj.bjp.0705338
- Sterin-Borda L., Echagüe A.V., Leiros C.P., Genaro A., Borda E. // Br. J. Pharmacol. 1995. V. 115. P. 1525–1531. https://doi.org/10.1111/j.1476-5381.1995.tb16646.x
- Wang Y.G., Rechenmacher C.E., Lipsius S.L. // J. Gen. Physiol. 1998. V. 111. P. 113–125. https://doi.org/10.1085/jgp.111.1.113
- Navarro-Polanco R.A., Moreno Galindo E.G., Ferrer-Villada T., Arias M., Rigby J.R., Sanchez-Chapula J.A., Tristani-Firouzi M. // J. Physiol. 2011. V. 589. P. 1741–1753. https://doi.org/10.1113/jphysiol.2010.204107
- Moss R., Sachse F.B., Moreno-Galindo E.G., Navarro-Polanco R.A., Tristani-Firouzi M., Seemann G. // PLoS Comput. Biol. 2018. V. 14. P. e1006438. https://doi.org/10.1371/journal.pcbi.1006438
- Wang H., Lu Y., Wang Z. // Auton. Autacoid Pharmacol. 2007. V. 27. P. 1–11. https://doi.org/10.1111/j.1474-8673.2006.00381.x
- Patanè S. // Int. J. Cardiol. 2014. V. 177. P. 646–649. https://doi.org/10.1016/j.ijcard.2014.09.178
- Wang H., Han H., Zhang L., Shi H., Schram G., Nattel S., Wang Z. // Mol. Pharmacol. 2001. V. 59. P. 1029–1036. https://doi.org/10.1124/mol.59.5.1029
- Wang Z., Shi H., Wang H. // Br. J. Pharmacol. 2004. V. 142. P. 395–408. https://doi.org/10.1038/sj.bjp.0705787
- Lymperopoulos A., Cora N., Maning J., Brill A.R., Sizova A. // FEBS J. 2021. V. 288. P. 2645–2659. https://doi.org/10.1111/febs.15771
- Abramochkin D.V., Tapilina S.V., Sukhova G.S., Nikolsky E.E., Nurullin L.F. // Pflugers Arch. 2012. V. 463. P. 523–529. https://doi.org/10.1007/s00424-012-1075-1
- Pérez C.C.N., Tobar I.D.B., Jiménez E., Castañeda D., Rivero M.B., Concepción J.L., Chiurillo M.A., Bonfante-Cabarcas R. // Pharmacol. Res. 2006. V. 54. P. 345–355. https://doi.org/10.1016/j.phrs.2006.07.001
- Heijman J., Kirchner D., Kunze F., Chrétien E.M., Michel-Reher M.B., Voigt N., Knaut M., Michel M.C., Ravens U., Dobrev D. // Int. J. Cardiol. 2018. V. 255. P. 61–68. https://doi.org/10.1016/j.ijcard.2017.12.050
- Poller U., Nedelka G., Radke J., Pönicke K., Brodde O.E. // J. Am. Coll. Cardiol. 1997. V. 29. P. 187–193. https://doi.org/10.1016/s0735-1097(96)00437-8
- Shi H., Wang H., Wang Z. // Mol. Pharmacol. 1999. V. 55. P. 497–507.
- Коваленко Н.Я., Мациевский Д.Д., Решетняк В.К. // Патологическая физиология и экспериментальная терапия. 2013. Т. 57. № 3. С. 23–26.
- Krejcí A., Tucek S. // Mol. Pharmacol. 2002. V. 61. P. 1267–1272. https://doi.org/10.1124/mol.61.6.1267
- Dvorakova M., Lips K.S., Brüggmann D., Slavikova J., Kuncova J., Kummer W. // Cell Tissue Res. 2005. V. 319. P. 201–209. https://doi.org/10.1007/s00441-004-1008-1
- Li D.L., Liu B.H., Sun L., Zhao M., He X., Yu X.J., Zang W.J. // Clin. Exp. Pharmacol. Physiol. 2010. V. 37. P. 1114–1119. https://doi.org/10.1111/j.1440-1681.2010.05448.x
- Li P., Yan Y., Shi Y., Cheng B., Zhan Y., Wang Q., Ye Q., Weng Y., Wu T., Wu R. // Oxid. Med. Cell Longev. 2019. V. 2019. P. e.9496419. https://doi.org/10.1155/2019/9496419
- Bucerius J., Joe A.Y., Schmaljohann J., Gündisch D., Minnerop M., Biersack H.J., Wüllner U., Reinhardt M.J. // Clin. Res. Cardiol. 2006. V. 95. P. 105–109. https://doi.org/10.1007/s00392-006-0342-6
- Brasch H., Iven H.B., Zetler G. // Naunyn-Schmiedeberg’s Arch. Pharmacol. 1977. V. 299. P. 259–265. https://doi.org/10.1007/BF00500318
- Fenton R.A., Dobson J.G. // Am. J. Physiol. 1985. V. 49. P. H463–H469. https://doi.org/10.1152/ajpheart.1985.249.3.H463
- Nakatani T., Nakashima T., Satoh H. // Gen. Pharmacol. 1994. V. 25. P. 865–873. https://doi.org/10.1016/0306-3623(94)90088-4
- Malińska D., Więckowski M.R., Michalska B., Drabik K., Prill M., Patalas-Krawczyk P., Walczak J., Szymański J., Mathis C., Van der Toorn M., Luettich K., Hoeng J., Peitsch M.C., Duszyński J., Szczepanowska J. // J. Bioenerg. Biomembr. 2019. V. 51. P. 259–276. https://doi.org/10.1007/s10863-019-09800-z
- Katare R.G., Ando M., Kakinuma Y., Arikawa M., Handa T., Yamasaki F., Sato T. // J. Thorac. Cardiovasc. Surg. 2009. V. 137. P. 223–231. https://doi.org/10.1016/j.jtcvs.2008.08.020
- Calvillo L., Vanoli E., Andreoli E., Besana A., Omodeo E., Gnecchi M., Zerbi P., Vago G., Busca G., Schwartz P.J. // J. Cardiovasc. Pharmacol. 2011. V. 58. P. 500–507. https://doi.org/10.1097/FJC.0b013e31822b7204
- Li M., Zheng C., Sato T., Kawada T., Sugimachi M., Sunagawa K. // Circulation. 2004. V. 109. P. 120–124. https://doi.org/10.1161/01.CIR.0000105721.71640.DA
- Sun J., Lu Y., Huang Y., Wugeti N. // Int. J. Clin. Exp. Med. 2015. V. 8. P. 9334–9340.
- Shinlapawittayatorn K., Chinda K., Palee S., Surinkaew S., Thunsiri K., Weerateerangkul P., Chattipakorn S., Ken-Knight B.H., Chattipakorn N.N. // Heart Rhythm. 2013. V. 10. P. 1700–1707. https://doi.org/10.1016/j.hrthm.2013.08.009
- Zhao M., He X., Bi X.Y., Yu X.J., Gil Wier W., Zang W.J. // Basic Res. Cardiol. 2013. V. 108. P. 345. https://doi.org/10.1007/s00395-013-0345-1
- Xue R.Q., Sun L., Yu X.J., Li D.L., Zang W.J. // J. Cell Mol. Med. 2017. V. 21. P. 58–71. https://doi.org/10.1111/jcmm.12938
- Intachai K., Chattipakorn S.C., Chattipakorn N., Shinlapawittayatorn K. // Int. J. Mol. Sci. 2018. V. 19. P. 2466. https://doi.org/10.3390/ijms19092466
- Liu L., Zhao M., Yu X., Zang W. // Neurosci. Bull. 2019. V. 35. P. 156–166. https://doi.org/10.1007/s12264-018-0286-7
- Li D.L., Liu J.J., Liu B.H., Hu H., Sun L., Miao Y., Xu H.F., Yu X.J., Ma X., Ren J., Zang W.J. // J. Cell Physiol. 2011. V. 226. P. 1052–1059. https://doi.org/10.1002/jcp.22424
- Miao Y., Zhou J., Zhao M., Liu J., Sun L., Yu X., He X., Pan X., Zang W. // Cell Physiol. Biochem. 2013. V. 31. P. 189–198. https://doi.org/10.1159/000343360
- Hang P.Z., Zhao J., Qi J.C., Wang Y., Wu J.W., Du Z.M. // Curr. Drug Targets. 2013. V. 14. P. 372–377.
- Liu Y., Wang S., Wang C., Song H., Han H., Hang P., Jiang Y., Wei L., Huo R., Sun L., Gao X., Lu Y., Du Z. // J. Transl. Med. 2013. V. 11. P. 209. https://doi.org/10.1186/1479-5876-11-209
- Lu X.Z., Bi X.Y., He X., Zhao M., Xu M., Yu X.J., Zhao Z.H., Zang W.J. // Br. J. Pharmacol. 2015. V. 172. P. 5619–5633. https://doi.org/10.1111/bph.13183
- Liu Y., Sun L., Pan Z., Bai Y., Wang N., Zhao J., Xu C., Li Z., Li B., Du Z., Lu Y., Gao X., Yang B. // Mol. Med. 2011. V. 17. P. 1179–1187. https://doi.org/10.2119/molmed.2011.00093
- Mavropoulos S.A., Khan N.S., Levy A.C.J., Faliks B.T., Sison C.P., Pavlov V.A., Zhang Y., Ojamaa K. // Mol. Med. 2017. V. 23. P. 120–133. https://doi.org/10.2119/molmed.2017.00091
- Monassier J.P. // Arch. Cardiovasc. Dis. 2008. V. 101. P. 491–500. https://doi.org/10.1016/j.acvd.2008.06.014
- Dhalla N.S., Golfman L., Takeda S., Takeda N., Nagano M. // Can. J. Cardiol. 1999. V. 15. P. 587–593.
- Palee S., Apaijai N., Shinlapawittayatorn K., Chattipakorn S.C., Chattipakorn N. // Cell Physiol. Biochem. 2016. V. 39. P. 341–349. https://doi.org/10.1159/000445628
- Prathumsap N., Ongnok B., Khuanjing T., Arinno A., Maneechote C., Apaijai N., Chunchai T., Arunsak B., Shinlapawittayatorn K., Chattipakorn S.C., Chattipakorn N. // Transl. Res. 2022. V. 243. P. 33–51. https://doi.org/10.1016/j.trsl.2021.12.005
- Xing R., Cheng X., Qi Y., Tian X., Yan C., Liu D., Han Y. // Biochem. Biophys. Res. Commun. 2020. V. 522. P. 1015–1021. https://doi.org/10.1016/j.bbrc.2019.11.086
- Wang S., Han H.M., Jiang Y.N., Wang C., Song H.X., Pan Z.Y., Fan K., Du J., Fan Y.H., Du Z.M., Liu Y. // Clin. Exp. Pharmacol. Physiol. 2012. V. 39. P. 343–349. https://doi.org/10.1111/j.1440-1681.2012.05672.x
- Liu Y., Sun H.L., Li D.L., Wang L.Y., Gao Y., Wang Y.P., Du Z.M., Lu Y.J., Yang B.F. // Can. J. Physiol. Pharmacol. 2008. V. 86. P. 860–865. https://doi.org/10.1139/Y08-094
- Wang S., Han H.M., Pan Z.W., Hang P.Z., Sun L.H., Jiang Y.N., Song H.X., Du Z.M., Liu Y. // Naunyn-Schmiedeberg’s Arch. Pharmacol. 2012. V. 385. P. 823–831. https://doi.org/10.1007/s00210-012-0740-4
- Zhao Y., Wang C., Wu J., Wang Y., Zhu W., Zhang Y., Du Z. // Int. J. Biol. Sci. 2013. V. 9. P. 295–302. https://doi.org/10.7150/ijbs.5976
- Zhao J., Su Y., Zhang Y., Pan Z., Yang L., Chen X., Liu Y., Lu Y., Du Z., Yang B. // Br. J. Pharmacol. 2010. V. 159. P. 1217–1225. https://doi.org/10.1111/j.1476-5381.2009.00606.x
- Liu L., Lu Y., Bi X., Xu M., Yu X., Xue R., He X., Zang W. // Sci. Rep. 2017. V. 7. P. 42553. https://doi.org/10.1038/srep42553
- Zhao L., Chen T., Hang P., Li W., Guo J., Pan Y., Du J., Zheng Y., Du Z. // Front. Pharmacol. 2019. V. 10. P. 1386. https://doi.org/10.3389/fphar.2019.01386
- Hernandez C.C., Nascimento J.H., Chaves E.A., Costa P.C., Masuda M.O., Kurtenbach E., Campos D.E., Carvalho A.C., Gimenez L.E. // J. Recept. Signal Transduct. Res. 2008. V. 28. P. 375–401. https://doi.org/10.1080/10799890802262319
- Liao F., Zheng Y., Cai J., Fan J., Wang J., Yang J., Cui Q., Xu G., Tang C., Geng B. // Sci. Rep. 2015. V. 16. P. 16590. https://doi.org/10.1038/srep16590
- Walch L., Brink C., Norel X. // Therapie. 2001. V. 56. P. 223–226.
- Radu B.M., Osculati A.M.M., Suku E., Banciu A., Tsenov G., Merigo F., Di Chio M., Banciu D.D., Tognoli C., Kacer P., Giorgetti A., Radu M., Bertini G., Fabene P.F. // Sci. Rep. 2017. V. 7. P. 5083. https://doi.org/10.1038/s41598-017-05384-z
- Eglen R.M., Hegde S.S., Watson N. // Pharmacol. Rev. 1996. V. 48. P. 531–565.
- Konidala S., Gutterman D.D. // Prog. Cardiovasc. Dis. 2004. V. 46. P. 349–373. https://doi.org/10.1016/j.pcad.2003.10.001
- Walch L., Norel X., Leconte B., Gascard J.P., Brink C. // Therapie. 1999. V. 54. P. 99–102.
- Pesić S., Grbović L., Jovanović A. // Pharmacology. 2002. V. 64. P. 182–188. https://doi.org/10.1159/000056169
- Norel X., Walch L., Costantino M., Labat C., Gorenne I., Dulmet E., Rossi F., Brink C. // Br. J. Pharmacol. 1996. V. 119. P. 149–157. https://doi.org/10.1111/j.1476-5381.1996.tb15688.x
- Tangsucharit P., Takatori S., Zamami Y., Goda M., Pakdeechote P., Kawasaki H., Takayama F. // J. Pharmacol. Sci. 2016. V. 130. P. 24–32. https://doi.org/10.1016/j.jphs.2015.12.005
- Dauphin F., Ting V., Payette P., Dennis M., Hamel E. // Eur. J. Pharmacol. 1991. V. 207. P. 319–327. https://doi.org/10.1016/0922-4106(91)90006-4
- O’Rourke S.T., Vanhoutte P.M. // J. Pharmacol. Exp. Ther. 1987. V. 241. P. 64–67.
- Shimizu T., Rosenblum W.I., Nelson G.H. // Am. J. Physiol. 1993. V. 264. P. H665–H669. https://doi.org/10.1152/ajpheart.1993.264.3.H665
- Pujol Lereis V.A., Hita F.J., Gobbi M.D., Verdi M.G., Rodriguez M.C., Rothlin R.P. // Br. J. Pharmacol. 2006. V. 147. P. 516–523. https://doi.org/10.1038/sj.bjp.0706654
- Ahmed M., VanPatten S., Lakshminrusimha S., Patel H., Coleman T.R., Al-Abed Y. // Physiol. Rep. 2016. V. 4. P. e13069. https://doi.org/10.14814/phy2.13069
- Евлахов В.И., Березина Т.П., Поясов И.З., Овсянников В.И. // Бюлл. эксперим. биол. мед. 2021. Т. 171. № 2. С. 159–163. https://doi.org/10.47056/0365-9615-2021-171-2-159-163
- Lung M.A. // Am. J. Rhinol. Allergy. 2011. V. 25. P. e60–e65. https://doi.org/10.2500/ajra.2011.25.3604
- Niihashi M., Esumi M., Kusumi Y., Sato Y., Sakurai I. // Angiology. 2000. V. 51. P. 295–300. https://doi.org/10.1177/000331970005100404
- Bény J.L., Nguyen M.N., Marino M., Matsui M. // J. Cardiovasc. Pharmacol. 2008. V. 51. P. 505–512. https://doi.org/10.1097/FJC.0b013e31816d5f2f
- Dauphin F., Hamel E. // Eur. J. Pharmacol. 1990. V. 178. P. 203–213. https://doi.org/10.1016/0014-2999(90)90476-M
- Gericke A., Steege A., Manicam C., Böhmer T., Wess J., Pfeiffer N. // Invest. Ophthalmol. Vis. Sci. 2014. V. 55. P. 625–631. https://doi.org/10.1167/iovs.13-13549
- Duckles S.P., Garcia-Villalon A.L. // J. Pharmacol. Exp. Ther. 1990. V. 253. P. 608–613.
- Jaiswal N., Lambrecht G., Mutschler E., Tacke R., Malik K.U. // J. Pharmacol. Exp. Ther. 1991. V. 258. P. 842–850.
- Коваленко Н.Я., Мациевский Д.Д., Решетняк В.К. // Бюлл. эксперим. биол. мед. 2013. Т. 156. № 12. С. 697–700.
- Yamada M., Lamping K.G., Duttaroy A., Zhang W., Cui Y., Bymaster F.P., McKinzie D.L., Felder C.C., Deng C.X., Faraci F.M., Wess J. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 14096–14101. https://doi.org/10.1073/pnas.251542998
- Zuccolo E., Laforenza U., Negri S., Botta L., Berra-Romani R., Faris P., Scarpellino G., Forcaia G., Pellavio G., Sancini G., Moccia F. // J. Cell. Physiol. 2019. V. 234. P. 4540–4562. https://doi.org/10.1002/jcp.27234
- Gericke A., Sniatecki J.J., Mayer V.G., Goloborodko E., Patzak A., Wess J., Pfeiffer N. // Am. J. Physiol. Heart Circ. Physiol. 2011. V. 300. P. H1602–H1608. https://doi.org/10.1152/ajpheart.00982.2010
- Conti-Fine B.M., Navaneetham D., Lei S., Maus A.D.J. // Eur. J. Pharmacol. 2000. V. 393. P. 279–294. https://doi.org/10.1016/S0014-2999(00)00036-34
- Heeschen C., Weis M., Aicher A., Dimmeler S., Cooke J.P. // J. Clin. Invest. 2002. V. 110. P. 527–536. https://doi.org/10.1172/JCI14676
- Brüggmann D., Lips K.S., Pfeil U., Haberberger R.V., Kummer W. // Histochem. Cell. Biol. 2002. V. 118. P. 441–447. https://doi.org/10.1007/s00418-002-0475-2
- Brüggmann D., Lips K.S., Pfeil U., Haberberger R.V., Kummer W. // Life Sci. 2003. V. 72. P. 2095–2099. https://doi.org/10.1016/s0024-3205(03)00067-5
- Wada T., Naito M., Kenmochi H., Tsuneki H., Sasaoka T. // Endocr. Rev. 2007. V. 148. P. 790–799. https://doi.org/10.1210/en.2006-0907
- Li D.-J., Zhao T., Xin R.-J., Wang Y.-Y., Fei Y.-B., Shen F.-M. // Cell. Physiol. Biochem. 2014. V. 33. P. 468–478. https://doi.org/10.1159/000358627
- Clifford P.M., Siu G., Kosciuk M., Levin E.C., Venkataraman V., D’Andrea M.R., Nagele R.G. // Brain Res. 2008. V. 1234. P. 158–171. https://doi.org/10.1016/j.brainres.2008.07.092
- Lips K.S., Bruggmann D., Pfeil U., Vollerthun R., Grando S.A., Kummer W. // Placenta. 2005. V. 26. P. 735–746. https://doi.org/10.1016/j.placenta.2004.10.009
- Gotti C., Clementi F. // Prog. Neurobiol. 2004. V. 74. P. 363–396. https://doi.org/10.1016/j.pneurobio.2004.09.006
- Egleton R.D., Brown K.C., Dasgupta P. // Pharmacol. Ther. 2009. V. 121. P. 205–223. https://doi.org/10.1016/j.pharmthera.2008.10.007
- Cooke J.P., Bitterman H. // Ann. Med. 2004. V. 36. P. 33–40. https://doi.org/10.1080/07853890310017576
- Macklin K.D., Maus A.D., Pereira E.F., Albuquerque E.X., Conti-Fine B.M. // J. Pharmacol. Exp. Ther. 1998. V. 287. P. 435–439.
- Moccia F., Frost C., Berra-Romani R., Tanzi F., Adams D.J. // Am. J. Physiol. Heart. Circ. Physiol. 2004. V. 286. P. H486–H491. https://doi.org/10.1152/ajpheart.00620.2003
- Bucerius J., Manka C., Schmaljohann J., Mani V., Gündisch D., Rudd J.H., Bippus R., Mottaghy F.M., Wüllner U., Fayad Z.A., Biersack H.J. // JACC Cardiovasc. Imaging. 2012. V. 5. P. 528–536. https://doi.org/10.1016/j.jcmg.2011.11.024
- Zou Q., Leung S.W., Vanhoutte P.M. // J. Pharmacol. Exp. Ther. 2012. V. 341. P. 756–763. https://doi.org/10.1124/jpet.112.192229
- Cooke J.P., Ghebremariam Y.T. // Trends Cardiovasc. Med. 2008. V. 18. P. 247–253. https://doi.org/10.1016/j.tcm.2008.11.007
- Wu J.C.F., Chruscinski A., Perez V.A.D.J., Singh H., Pitsiouni M., Rabinovitch M., Utz P.J., Cooke J.P. // J. Cell. Biochem. 2009. V. 446. P. 433–446. https://doi.org/10.1002/jcb.22270
- Li D.-J., Huang F., Ni M., Fu H., Zhang L.-S., Shen F.-M. // Arterioscler. Thromb. Vasc. Biol. 2016. V. 36. P. 1566–1576. https://doi.org/10.1161/ATVBAHA.116.307157
- Liu L., Wu H., Cao Q., Guo Z., Ren A., Dai Q. // Mediators Inflamm. 2017. V. 2017. P. 2401027. https://doi.org/10.1155/2017/2401027
- Li X., Wang H. // Life Sci. 2006. V. 78. P. 1863–1870. https://doi.org/10.1016/j.lfs.2005.08.031
- Peña V.B., Bonini I.C., Antollini S.S., Kobayashi T., Barrantes F.J. // J. Cell. Biochem. 2011. V. 112. P. 3276–3288. https://doi.org/10.1002/jcb.23254
- Whitehead A.K., Erwin A.P., Yue X. // Acta Physiol. (Oxf). 2021. V. 231. P. e13631. https://doi.org/10.1111/apha.13631
- Centner A.M., Bhide P.G., Salazar G. // Cells. 2020. V. 9. P. 1035. https://doi.org/10.3390/cells9041035
- Li Z.Z., Dai Q.Y. // Mediators Inflamm. 2012. V. 2012. P. 103120. https://doi.org/10.1155/2012/103120
- Gaemperli O., Liga R., Bhamra-Ariza P., Rimoldi O. // Curr. Pharm. Des. 2010. V. 16. P. 2586–2597. https://doi.org/10.2174/138161210792062894
- Cooke J.P. // Life Sci. 2007. V. 80. P. 2347–2351. https://doi.org/10.1016/j.lfs.2007.01.061
- Boswijk E., Bauwens M., Mottaghy F.M., Wildberger J.E., Bucerius J. // Methods. 2017. V. 130. P. 90–104. https://doi.org/10.1016/j.ymeth.2017.06.008
- Vazquez-Padron R.I., Mateu D., Rodriguez-Menocal L., Wei Y., Webster K.A., Pham S.M. // Cardiovasc. Res. 2010. V. 88. P. 296–303. https://doi.org/10.1093/cvr/cvq213
- Vieira-Alves I., Coimbra-Campos L.M.C., Sancho M., da Silva R.F., Cortes S.F., Lemos V.S. // Front Physiol. 2020. V. 11. P. 621769. https://doi.org/10.3389/fphys.2020.621769
- Libby P., Buring J. E., Badimon L., Hansson G.K., Deanfield J., Bittencourt S., Tokgözoğlu L., Lewis E.F. // Nat. Rev. Dis. Primers. 2019. V. 5. P. 56. https://doi.org/10.1038/s41572-019-0106-z
- Santanam N., Thornhill B.A., Lau J.K., Crabtree C.M., Cook C.R., Brown K.C., Dasgupta P. // Atherosclerosis. 2012. V. 225. P. 264–273. https://doi.org/10.1016/j.atherosclerosis.2012.07.041
- Lee J., Cooke J.P. // Atherosclerosis. 2011. V. 215. P. 281–283. https://doi.org/10.1016/j.atherosclerosis.2011.01.003
- Zhang G., Marshall A.L., Thomas A.L, Kernan K.A., Su Y., LeBoeuf R.C., Dong X.R., Tchao B.N. // Atherosclerosis. 2011. V. 215. P. 34–42. https://doi.org/10.1016/j.atherosclerosis.2010.07.057
- Brown K.C., Lau J.K., Dom A.M., Witte T.R., Luo H., Crabtree C.M., Shah Y.H., Shiflett B.S., Marcelo A.J., Proper N.A., Hardman W.E., Egleton R.D., Chen Y.C., Mangiarua E.I., Dasgupta P. // Angiogenesis. 2012. V. 15. P. 99–114. https://doi.org/10.1007/s10456-011-9246-9
