How Conventional Approaches to the Use of Polymer-Containing Composites in Molecular Diagnostics Are Changing
- Authors: Kapustin D.V.1
-
Affiliations:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
- Issue: Vol 49, No 2 (2023)
- Pages: 113-133
- Section: Articles
- URL: https://archivog.com/0132-3423/article/view/670634
- DOI: https://doi.org/10.31857/S0132342323020112
- EDN: https://elibrary.ru/PDBAWW
- ID: 670634
Cite item
Abstract
Known approaches to the isolation of biopolymers, in particular nucleic acids (NAs), from biological samples are based on the binding of molecules to a sorbent (“positive selection”) with their subsequent elution using a suitable eluent. The review article discusses the physicochemical processes underlying the development of methods for isolating of NAs from biological samples. It has been shown that methods including the selective solid-phase extraction (i.e., reversible sorption) provide the possibility of miniaturization and automation of the corresponding processes. The review discusses the advantages of an alternative approach to NAs isolation based on the use of special sorbents that bind proteins and other components of biological samples, while these sorbents exhibit sorption inertness with respect to NAs (“negative selection”). Approaches providing the creation of such composite polymer-containing sorbents, which are designed for the sample preparation during molecular diagnostics, as well as the methods of their effective use are considered. It has been demonstrated that due to an interdisciplinary approach using a complex of synthetic and analytical methods, it is possible to combine as a single object of study the composite materials that are very different in structure and properties. Such nanostructured composites (based on porous silica, synthetic membranes, glass multicapillaries) contain fluoropolymers and polyanilines. The results of the use of such composites for selective isolation of NAs and/or proteins from biological samples are discussed. Alternative applications of such composites in molecular diagnostics, in particular, in mass spectrometry, are considered. Directions for expanding of the field of application of polymer-containing composites due to simultaneous use of the sorption properties of the obtained composites surface and the properties of sorbate molecules are outlined. It has been shown that both polymeric and low molecular weight modifiers of the same chemical nature are suitable for the technological preparation of such composites.
About the authors
D. V. Kapustin
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Author for correspondence.
Email: kapustin@ibch.ru
Russia, 117997, Moscow,
ul. Miklukho-Maklaya 16/10
References
- Sambrook J., Russel D.W. // Molecular cloning: a laboratory manual. 3rd edition / Ed. Russel D.W. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2001. 2100 p.
- Marko M.A., Chipperfield R., Birnboim H.C. // Anal. Biochem. 1982. V. 121. P. 382–387. https://doi.org/10.1016/0003-2697(82)90497-3
- Chomczynski P., Sacchi N. // Nat. Protoc. 2006. V. 1. P. 581–585. https://doi.org/10.1038/nprot.2006.83
- Carr S.M., Griffith O.M. // Biochem. Genet. 1987. V. 25. P. 385–390. https://doi.org/10.1007/BF00554547
- Janson J.-Ch. // Protein purification: principles, high resolution methods, and applications. 3rd edition / Ed. Janson J.-Ch. Hoboken. NJ: John Wiley & Sons, Inc., 2011. 548 p.
- Albertson P.-A. // Partition of cell and macromoleculs. separation and purification of biomolecules, cell organelles, membranes and cell in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology. 3rd edition / Ed. Albertson P.-A. NY: John Wiley & Sons, Inc., 1986. 346 p.
- Остерман Л.А. // Хроматография белков и нуклеиновых кислот / Отв. ред. Георгиев Г.П. М.: Наука, 1985. 536 с.
- Snyder L.R., Kirkland J.J. // Introduction to modern liquid chromatography. 2nd edition / NY, Chichester, Brisbane, Toronto: John Wiley & Sons, Inc., 1979. 863 p.
- Rother D., Sen T., East D., Bruce I.J. // Nanomedicine (Lond). 2011. V. 6. P. 281–300. https://doi.org/10.2217/nnm.10.159
- Melzak K.A., Sherwood C.S., Turner R.F.B., Haynes C.A. // J. Colloid Interface Sci. 1996. V. 181. P. 635–644. https://doi.org/10.1006/JCIS.1996.0421
- Beld M., Sol C., Goudsmit J., Boom R // Nucl. Acids Res. 1996. V. 24. P. 2618–2619. https://doi.org/10.1093/nar/24.13.2618
- Yagudaeva E.Yu., Zybin D.I., Vikhrov A.A., Prostyakova A.I., Ischenko A.A., Zubov V.P., Kapustin D.V. // Colloids Surf. B Biointerfaces. 2018. V. 163. P. 83–90. https://doi.org/10.1016/j.colsurfb.2017.12.025
- QIAamp DNA Mini Kit and QIAamp DNA Blood Mini Kit Handbook // Qiagen, 2003. https://depts.washington.edu/kellylab/wordpress/wp-content/uploads/2019/03/QIAGEN_protocol.pdf
- Капустин Д.В. // Фторполимер- и полианилинсодержащие композиты как эффективный инструмент молекулярной биотехнологии. Дис. докт. хим. наук, ИБХ им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, Москва, 2020.
- Hjerten S. // J. Chromatogr. A. 1978. V. 159. P. 47–55. https://doi.org/10.1016/S0021-9673(00)98545-5
- Hjerten S., Hellman U. // J. Chromatogr. A. 1980. V. 202. P. 391–395. https://doi.org/10.1016/S0021-9673(00)91823-5
- Муйдинов М.Р. // Российский химический журнал (Журнал Российского химического общества им. Д.И. Менделеева). 2008. Т. LII. № 3. С. 81–89.
- Муйдинов М.Р. // Патент RU 2104695 C1, 1998.
- Сабуров В.В., Муйдинов М.Р., Гурьянов С.А., Катаев А.Д., Туркин С.И., Зубов В.П. // Журнал физической химии. 1991. Т. 65. № 10. С. 2692–2698.
- Капустин Д.В., Ягудаева Е.Ю., Завада Л.Л., Жигис Л.С., Зубов В.П., Ярошевская Е.М., Плобнер Л., Лайзер Р.-М., Брем Г. // Биоорг. химия. 2003. Т. 29. С. 310–315. [Kapustin D.V., Yagudaeva E.Yu., Zavada L.L., Zhigis L.S., Zubov V.P. Yaroshevskaya E.M., Plobner L., Leiser R.-M. // Russ. J. Bioorg. Chem. 2003. V. 29. P. 281–285.] https://doi.org/10.1023/a:1023992701568
- Ivanov A.E., Saburov V.V., Zubov V.V. // Advances in Polymer Science. 1992. V. 104. P. 134–175. https://doi.org/10.1007/3-540-55109-3_4
- Zubov V.P., Kapustin D.V., Generalova A.N., Yagudaeva E.Yu., Vikhrov A.A., Sizova S.V., Muydinov M.R. // Polymer Science Series A. 2007. V. 49. P. 1247–1264. https://doi.org/10.1134/S0965545X07120036
- Liaw D.-J., Yagudaeva E.Yu., Prostyakova A.I., Lazov M.A., Zybin D.I., Ischenko A.A., Zubov V.P., Chang C.-H., Huang Y.-C., Kapustin D.V. // Colloids Surf. B. 2016. V. 145. P. 912–921. https://doi.org/10.1016/j.colsurfb.2016.05.068
- Льяо Д.-Дж., Зыбин Д.И., Простякова А.И., Ягудаева Е.Ю., Вихров А.А., Ищенко А.А., Зубов В.П., Капустин Д.В. // Известия ВУЗов. Химия и химическая технология. 2018. Т. 61. С. 4–22. https://doi.org/10.6060/tcct.2018610
- Nikitin P.I., Gorshkov B.G., Nikitin E.P., Ksenevich T.I. // Sensors Actuators B. 2005. V. 111. P. 500–504. https://doi.org/10.1016/J.SNB.2005.03.043
- Orlov A.V., Pushkarev A.V., Znoyko S.L., Novichikhin D.O., Bragina V.A., Gorshkov B.G., Nikitin P.I. // Biosensors and Bioelectronics. 2020. V. 159. P. 112187. https://doi.org/10.1016/j.bios.2020.112187
- Walter W., Focke G.E., Wnek Y.W. // J. Phys. Chem. 1987. V. 91. P. 5813–5818. https://doi.org/10.1021/J100306A059
- Kapustin D., Prostyakova A., Bryk Ya., Yagudaeva E., Zubov V. // In: Nanocomposites and polymers with analytical methods / Ed. Cuppoletti J. Croatia: Intech, 2011. P. 83–106. https://doi.org/10.5772/18081
- Капустин Д.В., Зубов В.В. // Вестник МИТХТ. 2011. Т. 6. № 5. С. 21–46.
- Капустин Д.В., Сабуров В.В., Завада Л.Л., Евстратов А.В., Барсамян Г.Б., Зубов В.П. // Биоорг. химия. 1998. Т. 24. С. 868–876. [Kapustin D.V., Saburov V.V., Zavada L.L., Evstratov A.V. Barsamyan G.B., Zubov V.P. // Russ. J. Bioorg. Chem. 1998. V. 24. P. 770–777.]
- Kapustin D.V., Yagudaeva E.Y., Zubov V.P., Muydinov M.R., Yaroshevskaja E.M., Plobner L., Leiser R.-M., Brem G. // In: Frontiers in DNA Research / Ed. Woods C.R. NY: Nova Science Publishers, 2006. P. 113–136.
- Yagudaeva E.Yu., Muydinov M.R., Kapustin D.V., Zubov V.P. // Russ. Chem. Bull. Int. Ed. 2007. V. 56. P. 1166–1173. https://doi.org/10.1007/S11172-007-0177-Y
- Yagudaeva E.Yu., Bukina Ya.A., Prostyakova A.I., Zubov V.P., Tverskoy V.A., Kapustin D.V. // Polymer Sci. Ser. A. 2009. V. 51. P. 675–682. https://doi.org/10.1134/S0965545X09060121
- Kapustin D.V., Prostyakova A.I., Ryazantcev D.Yu., Zubov V.P. // Nanomedicine (Lond). 2011. V. 6. P. 241–255. https://doi.org/10.2217/nnm.11.6
- Простякова А.И. // Синтез полимерсодержащих сорбентов и их использование для одностадийного выделения ДНК. Дис. канд. хим. наук, ИБХ им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, Москва, 2013.
- Kapustin D.V., Prostyakova A.I., Zubov V.P. // Bioanalysis. 2014. V. 6. P. 957–966. https://doi.org/10.4155/bio.13.332
- Скибина Ю.С., Белоглазов В.И., Тучин В.В., Капустин Д.В., Простякова А.И. // Патент RU 2547597 C1, 2015.
- Капустин Д.В., Тарасов А.В., Простякова А.И., Лепешин С.А. // Патент RU 2631934 C1, 2017.
- Kapustin D.V., Prostyakova A.I., Alexeev Ya.I., Varlamov D.A., Zubov V.P., Zavriev S.K. // Acta Naturae. 2014. V. 6. C. 6–10. https://doi.org/10.32607/20758251-2014-6-2-48-52
- Zybin D.I., Prostyakova A.I., Kapustin D.V. // Microchem. J. 2021. V. 166. P. 106225. https://doi.org/10.1016/J.MICROC.2021.106225
- Иванова В.Т., Иванов В.Ф., Грибкова О.Л., Курочкина Я.Е., Матюшина Р.О., Ванников А.В. // Патент RU 2372951 C2, 2009.
- Морозова Е.О. // Сорбционное взаимодействие микропатогенов с полимерными материалами на основе полипиррола. Дис. канд. биол. наук, ФГБУ “НИЦЭМ им. Н.Ф. Гамалеи”, Москва, 2018.
- Ivanova V.T., Garina E.O., Burtseva E.I., Kirillova E.S., Ivanova M.V., Stejskal J., Sapurina I.Yu. // Chem. Papers. 2017. V. 71. P. 495–503.
- Зайцева И.П., Серебрянский Е.П., Скальная М.Г., Капустин Д.В. // Вестник восстановительной медицины. 2014. №. 2 (60). С. 62–65.
- Vaczine-Shlosser G., Ribbing C., Bachman P.K., Zubov V.P., Kapustin D.V. // Int. Application WO 2011004308 A1, 2011.
- Yagudaeva E., Vikhrov A., Malakhova Yu., Iskandyarova Yu., Firsova M., Prostyakova A., Korovin A., Malakhov S., Nichugovskiy A., Zubov V., Kapustin D. // Synthetic Metals. 2021. V. 274. P. 116712. https://doi.org/10.1016/j.synthmet.2021.116712
- Wang Y., Tran H.D., Liao L., Duan X., Kaner R. // J. Am. Chem. Soc. 2010. V. 132. P. 10365–10373. https://doi.org/10.1021/ja1014184
- MacDiarmid A.G., Zhou Y., Feng J. // Synthetic Metals. 1999. V. 100. P. 131–140. https://doi.org/10.1016/S0379-6779(98)00164-7
- Yepez G., Poyil A.N., Bugarin A. // Synthesis. 2019. V. 51. P. 3611–3616. https://doi.org/10.1055/S-0037-1611889
- Chu J.W.-F., Hsu Sh.-Ch., Lu Y., Yu Y., Santiago K.S., Yeh J. // Polymer. 2017. V. 128. P. 218–228. https://doi.org/10.1016/J.POLYMER.2017.09.034
- Liu Y., Li J., Zhu J., Lyu W., Xu H., Feng J., Yan W. // Colloid Polym. Sci. 2018. V. 296. P. 1777–1786. https://doi.org/10.1007/s00396-018-4401-0
- Ding Y., Liang J., Liu G., Ni W., Shen L. // Coatings. 2019. V. 9. P. 399–411. https://doi.org/10.3390/COATINGS9060399
- Wei Z., Faul C. // Macromol. Rapid Commun. 2008. V. 29. P. 280–292. https://doi.org/10.1002/MARC.200700741
- Wang W., MacDiarmid A.G. // Synthetic Metals. 2002. V. 129. P. 199–205. https://doi.org/10.1016/S0379-6779(02)00053-X
Supplementary files
