Multifunctional Proteins and Their Role in the Vital Activity of Cells
- Авторлар: Korshunov D.A.1, Sereda E.E.1,2, Kondakova I.V.1
-
Мекемелер:
- Cancer Research Institute, Tomsk National Research Medical Center RAS
- Siberian State Medical University
- Шығарылым: Том 49, № 3 (2023)
- Беттер: 259-274
- Бөлім: Articles
- URL: https://archivog.com/0132-3423/article/view/670608
- DOI: https://doi.org/10.31857/S0132342323030144
- EDN: https://elibrary.ru/PDRGXM
- ID: 670608
Дәйексөз келтіру
Аннотация
The function of a newly discovered protein is often assessed by matching its new sequence to sequences of proteins with known functions. However, protein superfamilies can contain homologous elements that catalyze different reactions. Some homologous proteins differ in that they perform a second or even a third function and are called moonlighting proteins, which can be translated as mate proteins or underwork proteins. Also, such proteins are called multifunctional. In addition to these, the superfamilies of proteins with multiple functions also include pseudoenzymes that have a common catalytically active domain but no catalytic activity, as well as metamorphs and morpheins. This review discusses examples of such proteins, their diversity of functions, and their importance in the life of the cell.
Негізгі сөздер
Авторлар туралы
D. Korshunov
Cancer Research Institute, Tomsk National Research Medical Center RAS
Хат алмасуға жауапты Автор.
Email: ieved@ya.ru
Russia, 634050, Tomsk, per. Kooperativnyi 5
E. Sereda
Cancer Research Institute, Tomsk National Research Medical Center RAS; Siberian State Medical University
Email: ieved@ya.ru
Russia, 634050, Tomsk, per. Kooperativnyi 5; Russia, 634050, Tomsk, Moskovskii trakt 2
I. Kondakova
Cancer Research Institute, Tomsk National Research Medical Center RAS
Email: ieved@ya.ru
Russia, 634050, Tomsk, per. Kooperativnyi 5
Әдебиет тізімі
- Ingolia T.D., Craig E.A. // PNAS. 1982. V. 79. P. 2360–2366. https://doi.org/10.1073/pnas.79.7.2360
- Bhat S.P., Nagineni C.N. // Biochem. Biophys. Res. Commun. 1989. V. 158. P. 319–325. https://doi.org/10.1016/s0006-291x(89)80215-3
- Dubin R.A., Wawrousek E.F., Piatigorsky J. // Mol. Cell. Biol. 1989. V. 9. P. 1083–1091. https://doi.org/10.1016/s0006-291x(89)80215-3
- Iwaki T., Kume-Iwaki A., Liem R.K., Goldman J.E. // Cell. 1989. V. 57. P. 71–78. https://doi.org/10.1016/0092-8674(89)90173-6
- Moscona A.A., Fox L., Smith J., Degenstein L. // PNAS. 1985. V. 82. P. 5570–5573. https://doi.org/10.1073/pnas.82.16.5570
- Piatigorsky J., O’Brien W.E., Norman B.L., Kalumuck K., Wistow G.J., Borras T., Nickerson J.M., Wawrousek E.F. // PNAS. 1988. V. 85. P. 3479–3483. https://doi.org/10.1073/pnas.85.10.3479
- Wistow G.J., Mulders J.W., de Jong W.W. // Nature. 1987. V. 326. P. 622–624. https://doi.org/10.1038/326622a0
- Piatigorsky J., Wistow G.J. // Cell. 1989. V. 57. P. 197–99. https://doi.org/10.1016/0092-8674(89)90956-2
- Jeffery C.J. // Trends Biochem. Sci. 1999. V. 24. P. 8–11. https://doi.org/10.1016/s0968-0004(98)01335-8
- Jeffery C.J. // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018. V. 373. P. 20160523. https://doi.org/10.1098/rstb.2016.0523
- Jeffery C.J. // Front Genet. 2015. V. 19. P. 211. https://doi.org/10.3389/fgene.2015.00211
- Banerjee S., Nandyala A.K., Raviprasad P., Ahmed N., Hasnain S.E. // J. Bacteriol. 2007. V. 189. P. 4046–4052. https://doi.org/10.1128/JB.00026-07
- Beinert H., Kennedy M.C. // FASEB J. 1993. V. 7. P. 1442–1449. https://doi.org/10.1096/fasebj.7.15.8262329
- Beinert H., Kennedy M.C., Stout C.D. // Chem. Rev. 1996. V. 96. P. 2335–2374. https://doi.org/10.1021/cr950040z
- Esquilin-Lebron K., Dubrac S., Barras F., Boyd J.M. // mBio. 2021. V. 12. P. e0242521. https://doi.org/10.1128/mBio.02425-21
- Beinert H., Holm R.H., Munck E. // Science. 1997. V. 277. P. 653–659. https://doi.org/10.1126/science.277.5326.653
- Kang D.K., Jeong J., Drake S.K., Wehr N.B., Rouault T.A., Levine R.L. // J. Biol. Chem. 2003. V. 278. P. 14857–14864. https://doi.org/10.1074/jbc.M300616200
- Haile D.J., Rouault T.A., Tang C.K., Chin J., Harford J.B., Klausner R.D. // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 7536–7540. https://doi.org/10.1073/pnas.89.16.7536
- Rouault T., Klausner R. // Curr. Top. Cell. Regul. 1997. V. 35. P. 1–19. https://doi.org/10.1016/s0070-2137(97)80001-5
- Fillebeen C., Pantopoulos K. // Redox Rep. 2002. V. 7. P. 15–22. https://doi.org/10.1179/135100002125000136
- Alén C., Sonenshein A.L. // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 10412–10417. https://doi.org/10.1073/pnas.96.18.10412
- Koeller D.M., Casey J.L., Hentze M.W., Gerhardt E.M., Chan L., Klausner R.D., Harford J.B. // Proc. Natl. Acad. Sci. USA. 1989. V. 86. P. 3574–3578. https://doi.org/10.1073/pnas.86.10.3574
- Bohne A.V., Schwarz C., Schottkowski M., Lidschreiber M., Piotrowski M., Zerges W., Nickelsen J. // PLoS Biol. 2013. V. 11. P. e1001482. https://doi.org/10.1371/journal.pbio.1001482
- Bohne A.V., Nickelsen J. // Mol. Plant. 2017. V. 10. P. 1–3. https://doi.org/10.1016/j.molp.2016.08.002
- Guan Y., Rawsthorne S., Scofield G., Shaw P., Doonan J. // J. Biol. Chem. 1995. V. 270. P. 5412–5417. https://doi.org/10.1074/jbc.270.10.5412
- Ke J., Behal R.H., Back S.L., Wurtele E.S., Oliver D.J. // Plant. Physiol. 2000. V. 123. P. 497–508. https://doi.org/10.1104/pp.123.2.497
- Mooney B.P., Miernyk J.A., Randall D.D. // Annu. Rev. Plant. Biol. 2002. V. 53. P. 357–375. https://doi.org/10.1146/annurev.arplant.53.100301.135251
- Wilson J.E. // J. Exp. Biol. 2003. V. 206. P. 2049–2057. https://doi.org/10.1242/jeb.00241
- Gancedo J.M. // Microbiol. Mol. Biol. Rev. 1998. V. 62. P. 334–361. https://doi.org/10.1128/MMBR.62.2.334-361.1998
- Boukouris A.E., Zervopoulos S.D., Michelakis E.D. // Biochem. Sci. 2016. V. 41. P. 712–730. https://doi.org/10.1016/j.tibs.2016.05.013
- Faik P., Walker J.I.H., Redmill A.A.M., Morgan M.J. // Nature. 1988. V. 332. P. 455–456. https://doi.org/10.1038/332455a0
- Chaput M., Claes V., Portetelle D., Cludts I., Cravador A., Burny A., Gras H., Tartar A. // Nature. 1988. V. 332. P. 454–455. https://doi.org/10.1038/332454a0
- Chou C.C., Sun Y.J., Meng M., Hsiao C.D. // J. Biol. Chem. 2000. V. 275. P. 23154–23160. https://doi.org/10.1074/jbc.M002017200
- Arsenieva D., Hardre R., Salmon L., Jeffery C.J. // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 5872–5877. https://doi.org/10.1073/pnas.052131799
- Korshunov D.A., Kondakova I.V., Shashova E.E. // Biochemistry (Mosc). 2019. V. 84. P. 1129–1142. https://doi.org/10.1134/S000629791910002X
- Teixeira F., Tse E., Castro H., Makepeace K.A.T., Meinen B.A., Borchers C.H., Poole L.B., Bardwell J.C., Tomás A.M., Southworth D.R., Jakob U. // Nat. Commun. 2019. V. 10. P. 659. https://doi.org/10.1038/s41467-019-08565-8
- Jang H.H., Lee K.O., Chi Y.H., Jung B.G., Park S.K., Lee J.R., Lee S.S., Moon J.C., Yun J.W., Choi Y.O., Kim W.Y., Kang J.S., Cheong G.W., Yun D.J., Rhee S.G., Cho M.J., Lee S.Y. // Cell. 2004. V. 117. P. 625–635. https://doi.org/10.1016/j.cell.2004.05.002
- Krojer T., Garrido-Franco M., Huber R., Ehrmann M., Clausen T. // Nature. 2002. V. 416. P. 455–459. https://doi.org/10.1038/416455a
- Šulskis D., Thoma J., Burmann B.M. // Sci. Adv. 2021. V. 10. P. eabj1816. https://doi.org/10.1126/sciadv.abj1816
- Bruns G., Gerald P. // Science. 1976. V. 192. P. 54–56. https://doi.org/10.1126/science.176725
- Bruns G., Lalley P., Francke U., Minna J. // Cell Genet. 1979. V. 25. P. 139.
- Mezquita J., Pau M., Mezquita C. // J. Cell. Biochem. 1998. V. 71. P. 127–139.
- Vollberg T., Cool B., Sirover M. // Cancer Res. 1987. V. 47. P. 123–128.
- Nagy E., Rigby W.F. // J. Biol. Chem. 1995. V. 270. P. 2755–2763. https://doi.org/10.1074/jbc.270.6.2755
- Schultz D.E., Hardin C.C., Lemon S.M. // J. Biol. Chem. 1996. V. 271. P. 14134–14142. https://doi.org/10.1074/jbc.271.24.14134
- Vartanian A., Prudovsky I., Suzuki H., Dal Pra I., Kisselev L. // FEBS Lett. 1997. V. 415. P. 160–162. https://doi.org/10.1016/s0014-5793(97)01086-7
- Laschet J.J., Minier F., Kurcewicz I., Bureau M.H., Trottier S., Jeanneteau F., Griffon N., Samyn B., Van Beeumen J., Louvel J., Sokoloff P., Pumain R. // J. Neurosci. 2004. V. 24. P. 7614–7622. https://doi.org/10.1523/JNEUROSCI.0868-04.2004
- Tisdale E.J. // Mol. Biol. Cell. 1999. V. 10. P. 837–849. https://doi.org/10.1091/mbc.10.6.1837
- Tisdale E.J. // J. Biol. Chem. 2001. V. 276. P. 2480–2486. https://doi.org/10.1074/jbc.M007567200
- Tisdale E.J. // J. Biol. Chem. 2002. V. 277. P. 3334–3341. https://doi.org/10.1074/jbc.M109744200
- Raje C.I., Kumar S., Harle A., Nanda J.S., Raje M. // J. Biol. Chem. 2007. V. 282. P. 3252–3261. https://doi.org/10.1074/jbc.M608328200
- Sweeny E.A., Singh A.B., Chakravarti R., Martinez-Guzman O., Saini A., Haque M.M., Garee G., Dans P.D., Hannibal L., Reddi A.R., Stuehr D.J. // J. Biol. Chem. 2018. V. 293. P. 14557–14568. https://doi.org/10.1074/jbc.RA118.004169
- Hannibal L, Collins D., Brassard J., Chakravarti R., Vempati R., Dorlet P., Santolini J., Dawson J.H., Stuehr D.J. // Biochemistry. 2012. V. 51. P. 8514–8529. https://doi.org/10.1021/bi300863a
- Chakravarti R., Aulak K.S., Fox P.L., Stuehr D.J. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 18004–18009. https://doi.org/10.1073/pnas.1008133107
- Albakri Q.A., Stuehr D.J. // J. Biol. Chem. 1996. V. 271. P. 5414–5421. https://doi.org/10.1074/jbc.271.10.5414
- Hara M.R., Agrawal N., Kim S.F., Cascio M.B., Fujimuro M., Ozeki Y., Takahashi M., Cheah J.H., Tankou S.K., Hester L.D., Ferris C.D., Hayward S.D., Snyder S.H., Sawa A. // Nat. Cell. Biol. 2005. V. 7. P. 665–674. https://doi.org/10.1038/ncb1268
- Hu G., Chung Y.L., Glover T., Valentine V., Look A.T., Fearon E.R. // Genomics. 1997. V. 46. P. 103–111. https://doi.org/10.1006/geno.1997.4997
- Li S., Li Y., Carthew R.W., Lai Z.C. // Cell. 1997. V. 90. P. 469–478. https://doi.org/10.1016/s0092-8674(00)80507-3
- Tang A.H., Neufeld T.P., Kwan E., Rubin G.M. // Cell. 1997. V. 90. P. 459–467. https://doi.org/10.1016/s0092-8674(00)80506-1
- González M.C., Romero J.M., Ingaramo M.C., Muñoz Sosa C.J., Curtino J.A., Carrizo M.E. // FEBS Lett. 2016. V. 590. P. 2210–2220. https://doi.org/10.1002/1873-3468.12242
- Lee S.B., Kim C.K., Lee K.H., Ahn J.Y. // J. Cell. Biol. 2012. V. 199. P. 65–76. https://doi.org/10.1083/jcb.201205015
- Sen N., Hara M.R., Kornberg M.D., Cascio M.B., Bae B.I., Shahani N., Thomas B., Dawson T.M., Dawson V.L., Snyder S.H., Sawa A. // Nat. Cell. Biol. 2008. V. 10. P. 866–873. https://doi.org/10.1038/ncb1747
- Huang Q., Lan F., Zheng Z., Xie F., Han J., Dong L., Xie Y., Zheng F. // J. Biol. Chem. 2011. V. 286. P. 42211–42220. https://doi.org/10.1074/jbc.M111.296905
- Sen T., Saha P., Sen N. // Sci. Signal. 2018. V. 11. P. eaao6765. https://doi.org/10.1126/scisignal.aao6765
- Shin M.K., Vázquez-Rosa E., Koh Y., Dhar M., Chaubey K., Cintrón-Pérez C.J., Barker S., Miller E., Franke K., Noterman M.F., Seth D., Allen R.S., Motz C.T., Rao S.R., Skelton L.A., Pardue M.T., Fliesler S.J., Wang C., Tracy T.E., Gan L., Liebl D.J., Savarraj J.P.J., Torres G.L., Ahnstedt H., McCullough L.D., Kitaga-wa R.S., Choi H.A., Zhang P., Hou Y., Chiang C.W., Li L., Ortiz F., Kilgore J.A., Williams N.S., Whitehair V.C., Gefen T., Flanagan M.E., Stamler J.S., Jain M.K., Kraus A., Cheng F., Reynolds J.D., Pieper A.A. // Cell. 2021. V. 184. P. 2715–2732. https://doi.org/10.1016/j.cell.2021.03.032
- Guha P., Harraz M.M., Snyder S.H. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 1417–1422. https://doi.org/10.1073/pnas.1524860113
- Chang C., Su H., Zhang D., Wang Y., Shen Q., Liu B., Huang R., Zhou T., Peng C., Wong C.C., Shen H.M., Lippincott-Schwartz J., Liu W. // Mol. Cell. 2015. V. 60. P. 930–940. https://doi.org/10.1016/j.molcel.2015.10.037
- Lee M.N., Ha S.H., Kim J., Koh A., Lee C.S., Kim J.H., Jeon H., Kim D.H., Suh P.G., Ryu S.H. // Mol. Cell. Biol. 2009. V. 29. P. 3991–4001. https://doi.org/10.1128/MCB.00165-09
- Jung C.H., Ro S.H., Cao J., Otto N.M., Kim D.H. // FEBS Lett. 2010. V. 584. P. 1287–1295. https://doi.org/10.1016/j.febslet.2010.01.017
- Chaudhary S., Dhiman A., Dilawari R., Chaubey G.K., Talukdar S., Modanwal R., Patidar A., Malhotra H., Raje C.I., Raje M. // Mol. Neurobiol. 2021. V. 58. P. 5790–5798. https://doi.org/10.1007/s12035-021-02532-5
- Lazarev V.F., Tsolaki M., Mikhaylova E.R., Benken K.A., Shevtsov M.A., Nikotina A.D., Lechpammer M., Mitkevich V.A., Makarov A.A., Moskalev A.A., Kozin S.A., Margulis B.A., Guzhova I.V., Nudler E. // Aging. Dis. 2021. V. 12. P. 1223–1237. https://doi.org/10.14336/AD.2020.1230
- Samson A.L., Knaupp A.S., Kass I., Kleifeld O., Marijanovic E.M., Hughes V.A., Lupton C.J., Buckle A.M., Bottomley S.P., Medcalf R.L. // J. Biol. Chem. 2014. V. 289. P. 26922–26936. https://doi.org/10.1074/jbc.M114.570275
- Nakajima H., Amano W., Fujita A., Fukuhara A., Azuma Y.T., Hata F., Inui T., Takeuchi T. // J. Biol. Chem. 2007. V. 282. P. 26562–26574. https://doi.org/10.1074/jbc.M704199200
- Nakajima H., Amano W., Fukuhara A., Kubo T., Misaki S., Azuma Y.T., Inui T., Takeuchi T. // Biochem. Biophys. Res. Commun. 2009. V. 390. P. 1066–1071. https://doi.org/10.1016/j.bbrc.2009.10.118
- Nakajima H., Amano W., Kubo T., Fukuhara A., Ihara H., Azuma Y.T., Tajima H., Inui T., Sawa A., Takeuchi T. // J. Biol. Chem. 2009. V. 284. P. 34331–34341. https://doi.org/10.1074/jbc.M109.027698
- Itakura M., Nakajima H., Kubo T., Semi Y., Kume S., Higashida S., Kaneshige A., Kuwamura M., Harada N., Kita A., Azuma Y.T., Yamaji R., Inui T., Takeuchi T. // J. Biol. Chem. 2015. V. 290. P. 26072–26087. https://doi.org/10.1074/jbc.M115.669291
- Bae B.I., Hara M.R., Cascio M.B., Wellington C.L., Hayden M.R., Ross C.A., Ha H.C., Li X.J., Snyder S.H., Sawa A. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 3405–3409. https://doi.org/10.1073/pnas.0511316103
- Hara M.R., Thomas B., Cascio M.B., Bae B.I., Hester L.D., Dawson V.L., Dawson T.M., Sawa A., Snyder S.H. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 3887–3889. https://doi.org/10.1073/pnas.0511321103
- Lazarev V.F., Nikotina A.D., Semenyuk P.I., Evstafyeva D.B., Mikhaylova E.R., Muronetz V.I., Shevtsov M.A., Tolkacheva A.V., Dobrodumov A.V., Shavarda A.L., Guzhova I.V., Margulis B.A. // Free Radic. Biol. Med. 2016. V. 92. P. 29–38. https://doi.org/10.1016/j.freeradbiomed.2015.12.025
- Muronetz V.I., Barinova K.V., Stroylova Y.Y., Semenyuk P.I., Schmalhausen E.V. // Int. J. Biol. Macromol. 2017. V. 100. P. 55–66. https://doi.org/10.1016/j.ijbiomac.2016.05.066
- Muronetz V.I., Melnikova A.K., Saso L., Schmalhausen E.V. // Curr. Med. Chem. 2020. V. 27. P. 2040–2058. https://doi.org/10.2174/0929867325666180530101057
- Colell A., Ricci J.E., Tait S., Milasta S., Maurer U., Bouchier-Hayes L., Fitzgerald P., Guio-Carrion A., Waterhouse N.J., Li C.W., Mari B., Barbry P., Newme-yer D.D., Beere H.M., Green D.R. // Cell. 2007. V. 129. P. 983–997. https://doi.org/10.1016/j.cell.2007.03.045
- Zheng L., Roeder R.G., Luo Y. // Cell. 2003. V. 114. P. 255–266. https://doi.org/10.1016/s0092-8674(03)00552-x
- Song S., Finkel T. // Nat. Cell Biol. 2007. V. 9. P. 869–870. https://doi.org/10.1038/ncb0807-869
- Park J., Han D., Kim K., Kang Y., Kim Y. // Biochim. Biophys. Acta. 2009. V. 1794. P. 254–262. https://doi.org/10.1016/j.bbapap.2008.10.003
- Franco-Serrano L., Cedano J., Perez-Pons J.A., Mozo-Villarias A., Piñol J., Amela I., Querol E. // Pathog. Dis. 2018. V. 76. P. fty046. https://doi.org/10.1093/femspd/fty046
- Henderson B. // Biochem. Soc. Trans. 2014. V. 42. P. 1720–1727. https://doi.org/10.1042/BST20140236
- Henderson B., Martin A. // Infect. Immun. 2011. V. 79. P. 3476–3491. https://doi.org/10.1128/IAI.00179-11
- Wang W.F., Jeffery C.J. // Mol. Biosyst. 2016. V. 12. P. 1420–1431. https://doi.org/10.1039/c5mb00550g
- Pancholi V., Fischetti V.A. // J. Exp. Med. 1992. V. 176. P. 415–426. https://doi.org/10.1084/jem.176.2.415
- Pancholi V., Fischetti V.A. // J. Exp. Med. 1997. V. 186. P. 1633–1634. https://doi.org/10.1084/jem.186.10.1633
- Pancholi V., Fischetti V.A. // PNAS. 1993. V. 90. P. 8154–8158. https://doi.org/10.1073/pnas.90.17.8154
- Terao Y., Yamaguchi M., Hamada S., Kawabata S. // J. Biol. Chem. 2006. V. 281. P. 14215–14223. https://doi.org/10.1074/jbc.M513408200
- Madureira P., Baptista M., Vieira M., Magalhães V., Camelo A., Oliveira L., Ribeiro A., Tavares D., Trieu-Cuot P., Vilanova M., Ferreira P. // J. Immunol. 2007. V. 178. P. 1379–1387. https://doi.org/10.4049/jimmunol.178.3.1379
- Bergmann S., Rohde M., Hammerschmidt S. // Infect. Immun. 2004. V. 72. P. 2416–2419. https://doi.org/10.1128/IAI.72.4.2416-2419.2004
- Hannibal L., Collins D., Brassard J., Chakravarti R., Vempati R., Dorlet P., Santolini J., Dawson J.H., Stuehr D.J. // Biochemistry. 2012. V. 51. P. 8514–8529. https://doi.org/10.1021/bi300863a
- Quessy S., Busque P., Higgins R., Jacques M., Dubreuil J.D. // FEMS Microbiol. Lett. 1997. V. 147. P. 245–250. https://doi.org/10.1111/j.1574-6968.1997.tb10249.x
- Brassard J., Gottschalk M., Quessy S. // Vet. Microbiol. 2004. V. 102. P. 87–94. https://doi.org/10.1016/j.vetmic.2004.05.008
- Wang J., Li Y., Pan L., Li J., Yu Y., Liu B., Zubair M., Wei Y., Pillay B., Olaniran A.O., Chiliza T.E., Shao G., Feng Z., Xiong Q. // Vet. Res. 2021. V. 52. P. 80. https://doi.org/10.1186/s13567-021-00952-8
- Alvarez R.A., Blaylock M.W., Baseman J.B. // Mol. Microbiol. 2003. V. 48. P. 1417–1425. https://doi.org/10.1046/j.1365-2958.2003.03518.x
- Sha J., Erova T.E., Alyea R.A. // J. Bacteriol. 2009. V. 191. P. 3095–3107. https://doi.org/10.1128/JB.00005-09
- Agarwal S., Kulshreshtha P., Bambah Mukku D., Bhatnagar R. // Biochim. Biophys. Acta. 2008. V. 1784. P. 986–994. https://doi.org/10.1016/j.bbapap.2008.03.017
- Knaust A., Weber M.V., Hammerschmidt S., Bergmann S., Frosch M., Kurzai O. // J. Bacteriol. 2007. V. 189. P. 3246–3255. https://doi.org/10.1128/JB.01966-06
- Kolberg J., Aase A., Bergmann S., Herstad T.K., Rødal G., Kurzai O. // Microbiology. 2006. V. 152. P. 1307–1317. https://doi.org/10.1099/mic.0.28747-0
- Mundodi V., Kucknoor A.S., Alderete J.F. // Infect. Immun. 2008. V. 76. P. 523–531. https://doi.org/10.1128/IAI.01352-07
- Antikainen J., Kuparinen V., Lahteenmaki K., Korhonen T.K. // FEMS Immunol. Med. Microbiol. 2007. V. 51. P. 526–534. https://doi.org/10.1111/j.1574-695X.2007.00330.x
- Collen D., Verstraete M. // Thromb. Diath. Haemorrh. 1975. V. 34. P. 403–408.
- Dano K., Andreasen P.A., Grondahl-Hansen J., Kristensen P., Nielsen L.S., Skriver L. // Adv. Cancer Res. 1985. V. 44. P. 139–266. https://doi.org/10.1016/s0065-230x(08)60028-7
- Esgleas M., Li Y., Hancock M.A., Harel J., Dubreuil J.D., Gottschalk M. // Microbiology. 2008. V. 154. P. 2668–2679. https://doi.org/10.1099/mic.0.2008/017145-0
- Carneiro C.R., Postol E., Nomizo R., Reis L.F., Brentani R.R. // Microbes Infect. 2004. V. 6. P. 604–608. https://doi.org/10.1016/j.micinf.2004.02.003
- Eyers P.A., Murphy J.M. // BMC Biol. 2016. V. 14. P. 98. https://doi.org/10.1186/s12915-016-0322-x
- Murphy J.M., Farhan H., Eyers P.A. // Biochem. Soc. Trans. 2017. V. 45. P. 537–544. https://doi.org/10.1042/BST20160400
- Todd A.E., Orengo C.A., Thornton J.M. // Structure. 2002. V. 10. P. 1435–1451. https://doi.org/10.1016/s0969-2126(02)00861-4
- Walden M., Masandi S.K., Pawłowski K., Zeqiraj E. // Biochem. Soc. Trans. 2018. V. 46. P. 453–466. https://doi.org/10.1042/BST20160268
- Pils B., Schultz J. // J. Mol. Biol. 2004. V. 340. P. 399–404. https://doi.org/10.1016/j.jmb.2004.04.063
- Jeffery C.J. // Biochem. Soc. Trans. 2019. V. 47. P. 371–379. https://doi.org/10.1042/BST20180473
- Brew K., Vanaman T.C., Hill R.L. // J. Biol. Chem. 1967. V. 242. P. 3747–3749.
- Klee W.A., Klee C.B. // Biochem. Biophys. Res. Commun. 1970. V. 39. P. 833–841. https://doi.org/10.1016/0006-291x(70)90398-0
- Ramakrishnan B., Qasba P.K. // Mol. Biol. 2001. V. 310. P. 205–218. https://doi.org/10.1006/jmbi.2001.4757
- Murzin A.G. // Science. 2008. V. 320. P. 725–1726. https://doi.org/10.1126/science.1158868
- Dishman A.F., Volkman B.F. // Acs. Chem. Biol. 2018. V. 13. P. 1438–1446. https://doi.org/10.1021/acschembio.8b00276
- Lella M., Mahalakshmi R. // Biochemistry. 2017. V. 56. P. 2971–2984. https://doi.org/10.1021/acs.biochem.7b00375
- Goodchild S.C., Curmi P.M.G., Brown L.J. // Biophys. Rev. 2011. V. 3. P. 143. https://doi.org/10.1007/s12551-011-0053-8
- Tuinstra R.L., Peterson F.C., Kutlesa S., Elgin E.S., Kron M.A., Volkman B.F. // Proc. Natl. Acad. Sci. USA. 2008. V. 105. P. 5057–5062. https://doi.org/10.1073/pnas.0709518105
- Burmann B.M., Knauer S.H., Sevostyanova A., Schweimer K., Mooney R.A., Landick R., Artsimovitch I., Rösch P. // Cell. 2012. V. 150. P. 291–303. https://doi.org/10.1016/j.cell.2012.05.042
- Goodchild S.C., Howell M.W., Littler D.R., Mandyam R.A., Sale K.L., Mazzanti M., Breit S.N., Curmi P.M., Brown L.J. // Biochemistry. 2010. V. 49. P. 5278–5289. https://doi.org/10.1021/bi100111c
- Luo X., Yu H. // Structure. 2008. V. 16. P. 1616–1625. https://doi.org/10.1016/j.str.2008.10.002
- Tseng R., Goularte N.F., Chavan A., Luu J., Cohen S.E., Chang Y.G., Heisler J., Li S., Michael A.K., Tripathi S., Golden S.S., LiWang A., Partch C.L. // Science. 2017. V. 355. P. 1174–1180. https://doi.org/10.1126/science.aag2516
- Dai Z., Tonelli M., Markley J.L. // Biochemistry. 2012. V. 51. P. 9595–9602. https://doi.org/10.1021/bi301413y
- Lopez-Pelegrin M., Cerda-Costa N., Cintas-Pedrola A., Herranz-Trillo F., Bernadó P., Peinado J.R., Arolas J.L., Gomis-Rüth F.X. // Angew. Chem. Int. Ed. Engl. 2014. V. 53. P. 10624–10630. https://doi.org/10.1002/anie.201405727
- London R.E. // Structure. 2019. V. 27. P. 420–426. https://doi.org/10.1016/j.str.2018.11.011
- Peterson F.C., Elgin E.S., Nelson T.J., Zhang F., Hoeger T.J., Linhardt R.J., Volkman B.F. // J. Biol. Chem. 2004. V. 279. P. 12598–12604. https://doi.org/10.1074/jbc.M311633200
- Tuinstra R.L., Peterson F.C., Elgin E.S., Pelzek A.J., Volkman B.F. // Biochemistry. 2007. V. 46. P. 2564–2573. https://doi.org/10.1021/bi602365d
- Jaffe E.K. // Trends Biochem. Sci. 2005. V. 30. P. 490–497. https://doi.org/10.1016/j.tibs.2005.07.003
- Jaffe E.K., Lawrence S.H. // Arch. Biochem. Biophys. 2012. V. 519. P. 144–153. https://doi.org/10.1016/j.abb.2011.10.010
- Guo G.G., Gu M., Etlinger J.D. // J. Biol. Chem. 1994. V. 269. P. 12399–12402.
- Li X.C., Gu M.Z., Etlinger J.D. // Biochemistry. 1991. V. 30. P. 9709–9715. https://doi.org/10.1021/bi00104a020
Қосымша файлдар
