Multifunctional Proteins and Their Role in the Vital Activity of Cells

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The function of a newly discovered protein is often assessed by matching its new sequence to sequences of proteins with known functions. However, protein superfamilies can contain homologous elements that catalyze different reactions. Some homologous proteins differ in that they perform a second or even a third function and are called moonlighting proteins, which can be translated as mate proteins or underwork proteins. Also, such proteins are called multifunctional. In addition to these, the superfamilies of proteins with multiple functions also include pseudoenzymes that have a common catalytically active domain but no catalytic activity, as well as metamorphs and morpheins. This review discusses examples of such proteins, their diversity of functions, and their importance in the life of the cell.

Авторлар туралы

D. Korshunov

Cancer Research Institute, Tomsk National Research Medical Center RAS

Хат алмасуға жауапты Автор.
Email: ieved@ya.ru
Russia, 634050, Tomsk, per. Kooperativnyi 5

E. Sereda

Cancer Research Institute, Tomsk National Research Medical Center RAS; Siberian State Medical University

Email: ieved@ya.ru
Russia, 634050, Tomsk, per. Kooperativnyi 5; Russia, 634050, Tomsk, Moskovskii trakt 2

I. Kondakova

Cancer Research Institute, Tomsk National Research Medical Center RAS

Email: ieved@ya.ru
Russia, 634050, Tomsk, per. Kooperativnyi 5

Әдебиет тізімі

  1. Ingolia T.D., Craig E.A. // PNAS. 1982. V. 79. P. 2360–2366. https://doi.org/10.1073/pnas.79.7.2360
  2. Bhat S.P., Nagineni C.N. // Biochem. Biophys. Res. Commun. 1989. V. 158. P. 319–325. https://doi.org/10.1016/s0006-291x(89)80215-3
  3. Dubin R.A., Wawrousek E.F., Piatigorsky J. // Mol. Cell. Biol. 1989. V. 9. P. 1083–1091. https://doi.org/10.1016/s0006-291x(89)80215-3
  4. Iwaki T., Kume-Iwaki A., Liem R.K., Goldman J.E. // Cell. 1989. V. 57. P. 71–78. https://doi.org/10.1016/0092-8674(89)90173-6
  5. Moscona A.A., Fox L., Smith J., Degenstein L. // PNAS. 1985. V. 82. P. 5570–5573. https://doi.org/10.1073/pnas.82.16.5570
  6. Piatigorsky J., O’Brien W.E., Norman B.L., Kalumuck K., Wistow G.J., Borras T., Nickerson J.M., Wawrousek E.F. // PNAS. 1988. V. 85. P. 3479–3483. https://doi.org/10.1073/pnas.85.10.3479
  7. Wistow G.J., Mulders J.W., de Jong W.W. // Nature. 1987. V. 326. P. 622–624. https://doi.org/10.1038/326622a0
  8. Piatigorsky J., Wistow G.J. // Cell. 1989. V. 57. P. 197–99. https://doi.org/10.1016/0092-8674(89)90956-2
  9. Jeffery C.J. // Trends Biochem. Sci. 1999. V. 24. P. 8–11. https://doi.org/10.1016/s0968-0004(98)01335-8
  10. Jeffery C.J. // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018. V. 373. P. 20160523. https://doi.org/10.1098/rstb.2016.0523
  11. Jeffery C.J. // Front Genet. 2015. V. 19. P. 211. https://doi.org/10.3389/fgene.2015.00211
  12. Banerjee S., Nandyala A.K., Raviprasad P., Ahmed N., Hasnain S.E. // J. Bacteriol. 2007. V. 189. P. 4046–4052. https://doi.org/10.1128/JB.00026-07
  13. Beinert H., Kennedy M.C. // FASEB J. 1993. V. 7. P. 1442–1449. https://doi.org/10.1096/fasebj.7.15.8262329
  14. Beinert H., Kennedy M.C., Stout C.D. // Chem. Rev. 1996. V. 96. P. 2335–2374. https://doi.org/10.1021/cr950040z
  15. Esquilin-Lebron K., Dubrac S., Barras F., Boyd J.M. // mBio. 2021. V. 12. P. e0242521. https://doi.org/10.1128/mBio.02425-21
  16. Beinert H., Holm R.H., Munck E. // Science. 1997. V. 277. P. 653–659. https://doi.org/10.1126/science.277.5326.653
  17. Kang D.K., Jeong J., Drake S.K., Wehr N.B., Rouault T.A., Levine R.L. // J. Biol. Chem. 2003. V. 278. P. 14857–14864. https://doi.org/10.1074/jbc.M300616200
  18. Haile D.J., Rouault T.A., Tang C.K., Chin J., Harford J.B., Klausner R.D. // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 7536–7540. https://doi.org/10.1073/pnas.89.16.7536
  19. Rouault T., Klausner R. // Curr. Top. Cell. Regul. 1997. V. 35. P. 1–19. https://doi.org/10.1016/s0070-2137(97)80001-5
  20. Fillebeen C., Pantopoulos K. // Redox Rep. 2002. V. 7. P. 15–22. https://doi.org/10.1179/135100002125000136
  21. Alén C., Sonenshein A.L. // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 10412–10417. https://doi.org/10.1073/pnas.96.18.10412
  22. Koeller D.M., Casey J.L., Hentze M.W., Gerhardt E.M., Chan L., Klausner R.D., Harford J.B. // Proc. Natl. Acad. Sci. USA. 1989. V. 86. P. 3574–3578. https://doi.org/10.1073/pnas.86.10.3574
  23. Bohne A.V., Schwarz C., Schottkowski M., Lidschreiber M., Piotrowski M., Zerges W., Nickelsen J. // PLoS Biol. 2013. V. 11. P. e1001482. https://doi.org/10.1371/journal.pbio.1001482
  24. Bohne A.V., Nickelsen J. // Mol. Plant. 2017. V. 10. P. 1–3. https://doi.org/10.1016/j.molp.2016.08.002
  25. Guan Y., Rawsthorne S., Scofield G., Shaw P., Doonan J. // J. Biol. Chem. 1995. V. 270. P. 5412–5417. https://doi.org/10.1074/jbc.270.10.5412
  26. Ke J., Behal R.H., Back S.L., Wurtele E.S., Oliver D.J. // Plant. Physiol. 2000. V. 123. P. 497–508. https://doi.org/10.1104/pp.123.2.497
  27. Mooney B.P., Miernyk J.A., Randall D.D. // Annu. Rev. Plant. Biol. 2002. V. 53. P. 357–375. https://doi.org/10.1146/annurev.arplant.53.100301.135251
  28. Wilson J.E. // J. Exp. Biol. 2003. V. 206. P. 2049–2057. https://doi.org/10.1242/jeb.00241
  29. Gancedo J.M. // Microbiol. Mol. Biol. Rev. 1998. V. 62. P. 334–361. https://doi.org/10.1128/MMBR.62.2.334-361.1998
  30. Boukouris A.E., Zervopoulos S.D., Michelakis E.D. // Biochem. Sci. 2016. V. 41. P. 712–730. https://doi.org/10.1016/j.tibs.2016.05.013
  31. Faik P., Walker J.I.H., Redmill A.A.M., Morgan M.J. // Nature. 1988. V. 332. P. 455–456. https://doi.org/10.1038/332455a0
  32. Chaput M., Claes V., Portetelle D., Cludts I., Cravador A., Burny A., Gras H., Tartar A. // Nature. 1988. V. 332. P. 454–455. https://doi.org/10.1038/332454a0
  33. Chou C.C., Sun Y.J., Meng M., Hsiao C.D. // J. Biol. Chem. 2000. V. 275. P. 23154–23160. https://doi.org/10.1074/jbc.M002017200
  34. Arsenieva D., Hardre R., Salmon L., Jeffery C.J. // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 5872–5877. https://doi.org/10.1073/pnas.052131799
  35. Korshunov D.A., Kondakova I.V., Shashova E.E. // Biochemistry (Mosc). 2019. V. 84. P. 1129–1142. https://doi.org/10.1134/S000629791910002X
  36. Teixeira F., Tse E., Castro H., Makepeace K.A.T., Meinen B.A., Borchers C.H., Poole L.B., Bardwell J.C., Tomás A.M., Southworth D.R., Jakob U. // Nat. Commun. 2019. V. 10. P. 659. https://doi.org/10.1038/s41467-019-08565-8
  37. Jang H.H., Lee K.O., Chi Y.H., Jung B.G., Park S.K., Lee J.R., Lee S.S., Moon J.C., Yun J.W., Choi Y.O., Kim W.Y., Kang J.S., Cheong G.W., Yun D.J., Rhee S.G., Cho M.J., Lee S.Y. // Cell. 2004. V. 117. P. 625–635. https://doi.org/10.1016/j.cell.2004.05.002
  38. Krojer T., Garrido-Franco M., Huber R., Ehrmann M., Clausen T. // Nature. 2002. V. 416. P. 455–459. https://doi.org/10.1038/416455a
  39. Šulskis D., Thoma J., Burmann B.M. // Sci. Adv. 2021. V. 10. P. eabj1816. https://doi.org/10.1126/sciadv.abj1816
  40. Bruns G., Gerald P. // Science. 1976. V. 192. P. 54–56. https://doi.org/10.1126/science.176725
  41. Bruns G., Lalley P., Francke U., Minna J. // Cell Genet. 1979. V. 25. P. 139.
  42. Mezquita J., Pau M., Mezquita C. // J. Cell. Biochem. 1998. V. 71. P. 127–139.
  43. Vollberg T., Cool B., Sirover M. // Cancer Res. 1987. V. 47. P. 123–128.
  44. Nagy E., Rigby W.F. // J. Biol. Chem. 1995. V. 270. P. 2755–2763. https://doi.org/10.1074/jbc.270.6.2755
  45. Schultz D.E., Hardin C.C., Lemon S.M. // J. Biol. Chem. 1996. V. 271. P. 14134–14142. https://doi.org/10.1074/jbc.271.24.14134
  46. Vartanian A., Prudovsky I., Suzuki H., Dal Pra I., Kisselev L. // FEBS Lett. 1997. V. 415. P. 160–162. https://doi.org/10.1016/s0014-5793(97)01086-7
  47. Laschet J.J., Minier F., Kurcewicz I., Bureau M.H., Trottier S., Jeanneteau F., Griffon N., Samyn B., Van Beeumen J., Louvel J., Sokoloff P., Pumain R. // J. Neurosci. 2004. V. 24. P. 7614–7622. https://doi.org/10.1523/JNEUROSCI.0868-04.2004
  48. Tisdale E.J. // Mol. Biol. Cell. 1999. V. 10. P. 837–849. https://doi.org/10.1091/mbc.10.6.1837
  49. Tisdale E.J. // J. Biol. Chem. 2001. V. 276. P. 2480–2486. https://doi.org/10.1074/jbc.M007567200
  50. Tisdale E.J. // J. Biol. Chem. 2002. V. 277. P. 3334–3341. https://doi.org/10.1074/jbc.M109744200
  51. Raje C.I., Kumar S., Harle A., Nanda J.S., Raje M. // J. Biol. Chem. 2007. V. 282. P. 3252–3261. https://doi.org/10.1074/jbc.M608328200
  52. Sweeny E.A., Singh A.B., Chakravarti R., Martinez-Guzman O., Saini A., Haque M.M., Garee G., Dans P.D., Hannibal L., Reddi A.R., Stuehr D.J. // J. Biol. Chem. 2018. V. 293. P. 14557–14568. https://doi.org/10.1074/jbc.RA118.004169
  53. Hannibal L, Collins D., Brassard J., Chakravarti R., Vempati R., Dorlet P., Santolini J., Dawson J.H., Stuehr D.J. // Biochemistry. 2012. V. 51. P. 8514–8529. https://doi.org/10.1021/bi300863a
  54. Chakravarti R., Aulak K.S., Fox P.L., Stuehr D.J. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 18004–18009. https://doi.org/10.1073/pnas.1008133107
  55. Albakri Q.A., Stuehr D.J. // J. Biol. Chem. 1996. V. 271. P. 5414–5421. https://doi.org/10.1074/jbc.271.10.5414
  56. Hara M.R., Agrawal N., Kim S.F., Cascio M.B., Fujimuro M., Ozeki Y., Takahashi M., Cheah J.H., Tankou S.K., Hester L.D., Ferris C.D., Hayward S.D., Snyder S.H., Sawa A. // Nat. Cell. Biol. 2005. V. 7. P. 665–674. https://doi.org/10.1038/ncb1268
  57. Hu G., Chung Y.L., Glover T., Valentine V., Look A.T., Fearon E.R. // Genomics. 1997. V. 46. P. 103–111. https://doi.org/10.1006/geno.1997.4997
  58. Li S., Li Y., Carthew R.W., Lai Z.C. // Cell. 1997. V. 90. P. 469–478. https://doi.org/10.1016/s0092-8674(00)80507-3
  59. Tang A.H., Neufeld T.P., Kwan E., Rubin G.M. // Cell. 1997. V. 90. P. 459–467. https://doi.org/10.1016/s0092-8674(00)80506-1
  60. González M.C., Romero J.M., Ingaramo M.C., Muñoz Sosa C.J., Curtino J.A., Carrizo M.E. // FEBS Lett. 2016. V. 590. P. 2210–2220. https://doi.org/10.1002/1873-3468.12242
  61. Lee S.B., Kim C.K., Lee K.H., Ahn J.Y. // J. Cell. Biol. 2012. V. 199. P. 65–76. https://doi.org/10.1083/jcb.201205015
  62. Sen N., Hara M.R., Kornberg M.D., Cascio M.B., Bae B.I., Shahani N., Thomas B., Dawson T.M., Dawson V.L., Snyder S.H., Sawa A. // Nat. Cell. Biol. 2008. V. 10. P. 866–873. https://doi.org/10.1038/ncb1747
  63. Huang Q., Lan F., Zheng Z., Xie F., Han J., Dong L., Xie Y., Zheng F. // J. Biol. Chem. 2011. V. 286. P. 42211–42220. https://doi.org/10.1074/jbc.M111.296905
  64. Sen T., Saha P., Sen N. // Sci. Signal. 2018. V. 11. P. eaao6765. https://doi.org/10.1126/scisignal.aao6765
  65. Shin M.K., Vázquez-Rosa E., Koh Y., Dhar M., Chaubey K., Cintrón-Pérez C.J., Barker S., Miller E., Franke K., Noterman M.F., Seth D., Allen R.S., Motz C.T., Rao S.R., Skelton L.A., Pardue M.T., Fliesler S.J., Wang C., Tracy T.E., Gan L., Liebl D.J., Savarraj J.P.J., Torres G.L., Ahnstedt H., McCullough L.D., Kitaga-wa R.S., Choi H.A., Zhang P., Hou Y., Chiang C.W., Li L., Ortiz F., Kilgore J.A., Williams N.S., Whitehair V.C., Gefen T., Flanagan M.E., Stamler J.S., Jain M.K., Kraus A., Cheng F., Reynolds J.D., Pieper A.A. // Cell. 2021. V. 184. P. 2715–2732. https://doi.org/10.1016/j.cell.2021.03.032
  66. Guha P., Harraz M.M., Snyder S.H. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 1417–1422. https://doi.org/10.1073/pnas.1524860113
  67. Chang C., Su H., Zhang D., Wang Y., Shen Q., Liu B., Huang R., Zhou T., Peng C., Wong C.C., Shen H.M., Lippincott-Schwartz J., Liu W. // Mol. Cell. 2015. V. 60. P. 930–940. https://doi.org/10.1016/j.molcel.2015.10.037
  68. Lee M.N., Ha S.H., Kim J., Koh A., Lee C.S., Kim J.H., Jeon H., Kim D.H., Suh P.G., Ryu S.H. // Mol. Cell. Biol. 2009. V. 29. P. 3991–4001. https://doi.org/10.1128/MCB.00165-09
  69. Jung C.H., Ro S.H., Cao J., Otto N.M., Kim D.H. // FEBS Lett. 2010. V. 584. P. 1287–1295. https://doi.org/10.1016/j.febslet.2010.01.017
  70. Chaudhary S., Dhiman A., Dilawari R., Chaubey G.K., Talukdar S., Modanwal R., Patidar A., Malhotra H., Raje C.I., Raje M. // Mol. Neurobiol. 2021. V. 58. P. 5790–5798. https://doi.org/10.1007/s12035-021-02532-5
  71. Lazarev V.F., Tsolaki M., Mikhaylova E.R., Benken K.A., Shevtsov M.A., Nikotina A.D., Lechpammer M., Mitkevich V.A., Makarov A.A., Moskalev A.A., Kozin S.A., Margulis B.A., Guzhova I.V., Nudler E. // Aging. Dis. 2021. V. 12. P. 1223–1237. https://doi.org/10.14336/AD.2020.1230
  72. Samson A.L., Knaupp A.S., Kass I., Kleifeld O., Marijanovic E.M., Hughes V.A., Lupton C.J., Buckle A.M., Bottomley S.P., Medcalf R.L. // J. Biol. Chem. 2014. V. 289. P. 26922–26936. https://doi.org/10.1074/jbc.M114.570275
  73. Nakajima H., Amano W., Fujita A., Fukuhara A., Azuma Y.T., Hata F., Inui T., Takeuchi T. // J. Biol. Chem. 2007. V. 282. P. 26562–26574. https://doi.org/10.1074/jbc.M704199200
  74. Nakajima H., Amano W., Fukuhara A., Kubo T., Misaki S., Azuma Y.T., Inui T., Takeuchi T. // Biochem. Biophys. Res. Commun. 2009. V. 390. P. 1066–1071. https://doi.org/10.1016/j.bbrc.2009.10.118
  75. Nakajima H., Amano W., Kubo T., Fukuhara A., Ihara H., Azuma Y.T., Tajima H., Inui T., Sawa A., Takeuchi T. // J. Biol. Chem. 2009. V. 284. P. 34331–34341. https://doi.org/10.1074/jbc.M109.027698
  76. Itakura M., Nakajima H., Kubo T., Semi Y., Kume S., Higashida S., Kaneshige A., Kuwamura M., Harada N., Kita A., Azuma Y.T., Yamaji R., Inui T., Takeuchi T. // J. Biol. Chem. 2015. V. 290. P. 26072–26087. https://doi.org/10.1074/jbc.M115.669291
  77. Bae B.I., Hara M.R., Cascio M.B., Wellington C.L., Hayden M.R., Ross C.A., Ha H.C., Li X.J., Snyder S.H., Sawa A. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 3405–3409. https://doi.org/10.1073/pnas.0511316103
  78. Hara M.R., Thomas B., Cascio M.B., Bae B.I., Hester L.D., Dawson V.L., Dawson T.M., Sawa A., Snyder S.H. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 3887–3889. https://doi.org/10.1073/pnas.0511321103
  79. Lazarev V.F., Nikotina A.D., Semenyuk P.I., Evstafyeva D.B., Mikhaylova E.R., Muronetz V.I., Shevtsov M.A., Tolkacheva A.V., Dobrodumov A.V., Shavarda A.L., Guzhova I.V., Margulis B.A. // Free Radic. Biol. Med. 2016. V. 92. P. 29–38. https://doi.org/10.1016/j.freeradbiomed.2015.12.025
  80. Muronetz V.I., Barinova K.V., Stroylova Y.Y., Semenyuk P.I., Schmalhausen E.V. // Int. J. Biol. Macromol. 2017. V. 100. P. 55–66. https://doi.org/10.1016/j.ijbiomac.2016.05.066
  81. Muronetz V.I., Melnikova A.K., Saso L., Schmalhausen E.V. // Curr. Med. Chem. 2020. V. 27. P. 2040–2058. https://doi.org/10.2174/0929867325666180530101057
  82. Colell A., Ricci J.E., Tait S., Milasta S., Maurer U., Bouchier-Hayes L., Fitzgerald P., Guio-Carrion A., Waterhouse N.J., Li C.W., Mari B., Barbry P., Newme-yer D.D., Beere H.M., Green D.R. // Cell. 2007. V. 129. P. 983–997. https://doi.org/10.1016/j.cell.2007.03.045
  83. Zheng L., Roeder R.G., Luo Y. // Cell. 2003. V. 114. P. 255–266. https://doi.org/10.1016/s0092-8674(03)00552-x
  84. Song S., Finkel T. // Nat. Cell Biol. 2007. V. 9. P. 869–870. https://doi.org/10.1038/ncb0807-869
  85. Park J., Han D., Kim K., Kang Y., Kim Y. // Biochim. Biophys. Acta. 2009. V. 1794. P. 254–262. https://doi.org/10.1016/j.bbapap.2008.10.003
  86. Franco-Serrano L., Cedano J., Perez-Pons J.A., Mozo-Villarias A., Piñol J., Amela I., Querol E. // Pathog. Dis. 2018. V. 76. P. fty046. https://doi.org/10.1093/femspd/fty046
  87. Henderson B. // Biochem. Soc. Trans. 2014. V. 42. P. 1720–1727. https://doi.org/10.1042/BST20140236
  88. Henderson B., Martin A. // Infect. Immun. 2011. V. 79. P. 3476–3491. https://doi.org/10.1128/IAI.00179-11
  89. Wang W.F., Jeffery C.J. // Mol. Biosyst. 2016. V. 12. P. 1420–1431. https://doi.org/10.1039/c5mb00550g
  90. Pancholi V., Fischetti V.A. // J. Exp. Med. 1992. V. 176. P. 415–426. https://doi.org/10.1084/jem.176.2.415
  91. Pancholi V., Fischetti V.A. // J. Exp. Med. 1997. V. 186. P. 1633–1634. https://doi.org/10.1084/jem.186.10.1633
  92. Pancholi V., Fischetti V.A. // PNAS. 1993. V. 90. P. 8154–8158. https://doi.org/10.1073/pnas.90.17.8154
  93. Terao Y., Yamaguchi M., Hamada S., Kawabata S. // J. Biol. Chem. 2006. V. 281. P. 14215–14223. https://doi.org/10.1074/jbc.M513408200
  94. Madureira P., Baptista M., Vieira M., Magalhães V., Camelo A., Oliveira L., Ribeiro A., Tavares D., Trieu-Cuot P., Vilanova M., Ferreira P. // J. Immunol. 2007. V. 178. P. 1379–1387. https://doi.org/10.4049/jimmunol.178.3.1379
  95. Bergmann S., Rohde M., Hammerschmidt S. // Infect. Immun. 2004. V. 72. P. 2416–2419. https://doi.org/10.1128/IAI.72.4.2416-2419.2004
  96. Hannibal L., Collins D., Brassard J., Chakravarti R., Vempati R., Dorlet P., Santolini J., Dawson J.H., Stuehr D.J. // Biochemistry. 2012. V. 51. P. 8514–8529. https://doi.org/10.1021/bi300863a
  97. Quessy S., Busque P., Higgins R., Jacques M., Dubreuil J.D. // FEMS Microbiol. Lett. 1997. V. 147. P. 245–250. https://doi.org/10.1111/j.1574-6968.1997.tb10249.x
  98. Brassard J., Gottschalk M., Quessy S. // Vet. Microbiol. 2004. V. 102. P. 87–94. https://doi.org/10.1016/j.vetmic.2004.05.008
  99. Wang J., Li Y., Pan L., Li J., Yu Y., Liu B., Zubair M., Wei Y., Pillay B., Olaniran A.O., Chiliza T.E., Shao G., Feng Z., Xiong Q. // Vet. Res. 2021. V. 52. P. 80. https://doi.org/10.1186/s13567-021-00952-8
  100. Alvarez R.A., Blaylock M.W., Baseman J.B. // Mol. Microbiol. 2003. V. 48. P. 1417–1425. https://doi.org/10.1046/j.1365-2958.2003.03518.x
  101. Sha J., Erova T.E., Alyea R.A. // J. Bacteriol. 2009. V. 191. P. 3095–3107. https://doi.org/10.1128/JB.00005-09
  102. Agarwal S., Kulshreshtha P., Bambah Mukku D., Bhatnagar R. // Biochim. Biophys. Acta. 2008. V. 1784. P. 986–994. https://doi.org/10.1016/j.bbapap.2008.03.017
  103. Knaust A., Weber M.V., Hammerschmidt S., Bergmann S., Frosch M., Kurzai O. // J. Bacteriol. 2007. V. 189. P. 3246–3255. https://doi.org/10.1128/JB.01966-06
  104. Kolberg J., Aase A., Bergmann S., Herstad T.K., Rødal G., Kurzai O. // Microbiology. 2006. V. 152. P. 1307–1317. https://doi.org/10.1099/mic.0.28747-0
  105. Mundodi V., Kucknoor A.S., Alderete J.F. // Infect. Immun. 2008. V. 76. P. 523–531. https://doi.org/10.1128/IAI.01352-07
  106. Antikainen J., Kuparinen V., Lahteenmaki K., Korhonen T.K. // FEMS Immunol. Med. Microbiol. 2007. V. 51. P. 526–534. https://doi.org/10.1111/j.1574-695X.2007.00330.x
  107. Collen D., Verstraete M. // Thromb. Diath. Haemorrh. 1975. V. 34. P. 403–408.
  108. Dano K., Andreasen P.A., Grondahl-Hansen J., Kristensen P., Nielsen L.S., Skriver L. // Adv. Cancer Res. 1985. V. 44. P. 139–266. https://doi.org/10.1016/s0065-230x(08)60028-7
  109. Esgleas M., Li Y., Hancock M.A., Harel J., Dubreuil J.D., Gottschalk M. // Microbiology. 2008. V. 154. P. 2668–2679. https://doi.org/10.1099/mic.0.2008/017145-0
  110. Carneiro C.R., Postol E., Nomizo R., Reis L.F., Brentani R.R. // Microbes Infect. 2004. V. 6. P. 604–608. https://doi.org/10.1016/j.micinf.2004.02.003
  111. Eyers P.A., Murphy J.M. // BMC Biol. 2016. V. 14. P. 98. https://doi.org/10.1186/s12915-016-0322-x
  112. Murphy J.M., Farhan H., Eyers P.A. // Biochem. Soc. Trans. 2017. V. 45. P. 537–544. https://doi.org/10.1042/BST20160400
  113. Todd A.E., Orengo C.A., Thornton J.M. // Structure. 2002. V. 10. P. 1435–1451. https://doi.org/10.1016/s0969-2126(02)00861-4
  114. Walden M., Masandi S.K., Pawłowski K., Zeqiraj E. // Biochem. Soc. Trans. 2018. V. 46. P. 453–466. https://doi.org/10.1042/BST20160268
  115. Pils B., Schultz J. // J. Mol. Biol. 2004. V. 340. P. 399–404. https://doi.org/10.1016/j.jmb.2004.04.063
  116. Jeffery C.J. // Biochem. Soc. Trans. 2019. V. 47. P. 371–379. https://doi.org/10.1042/BST20180473
  117. Brew K., Vanaman T.C., Hill R.L. // J. Biol. Chem. 1967. V. 242. P. 3747–3749.
  118. Klee W.A., Klee C.B. // Biochem. Biophys. Res. Commun. 1970. V. 39. P. 833–841. https://doi.org/10.1016/0006-291x(70)90398-0
  119. Ramakrishnan B., Qasba P.K. // Mol. Biol. 2001. V. 310. P. 205–218. https://doi.org/10.1006/jmbi.2001.4757
  120. Murzin A.G. // Science. 2008. V. 320. P. 725–1726. https://doi.org/10.1126/science.1158868
  121. Dishman A.F., Volkman B.F. // Acs. Chem. Biol. 2018. V. 13. P. 1438–1446. https://doi.org/10.1021/acschembio.8b00276
  122. Lella M., Mahalakshmi R. // Biochemistry. 2017. V. 56. P. 2971–2984. https://doi.org/10.1021/acs.biochem.7b00375
  123. Goodchild S.C., Curmi P.M.G., Brown L.J. // Biophys. Rev. 2011. V. 3. P. 143. https://doi.org/10.1007/s12551-011-0053-8
  124. Tuinstra R.L., Peterson F.C., Kutlesa S., Elgin E.S., Kron M.A., Volkman B.F. // Proc. Natl. Acad. Sci. USA. 2008. V. 105. P. 5057–5062. https://doi.org/10.1073/pnas.0709518105
  125. Burmann B.M., Knauer S.H., Sevostyanova A., Schweimer K., Mooney R.A., Landick R., Artsimovitch I., Rösch P. // Cell. 2012. V. 150. P. 291–303. https://doi.org/10.1016/j.cell.2012.05.042
  126. Goodchild S.C., Howell M.W., Littler D.R., Mandyam R.A., Sale K.L., Mazzanti M., Breit S.N., Curmi P.M., Brown L.J. // Biochemistry. 2010. V. 49. P. 5278–5289. https://doi.org/10.1021/bi100111c
  127. Luo X., Yu H. // Structure. 2008. V. 16. P. 1616–1625. https://doi.org/10.1016/j.str.2008.10.002
  128. Tseng R., Goularte N.F., Chavan A., Luu J., Cohen S.E., Chang Y.G., Heisler J., Li S., Michael A.K., Tripathi S., Golden S.S., LiWang A., Partch C.L. // Science. 2017. V. 355. P. 1174–1180. https://doi.org/10.1126/science.aag2516
  129. Dai Z., Tonelli M., Markley J.L. // Biochemistry. 2012. V. 51. P. 9595–9602. https://doi.org/10.1021/bi301413y
  130. Lopez-Pelegrin M., Cerda-Costa N., Cintas-Pedrola A., Herranz-Trillo F., Bernadó P., Peinado J.R., Arolas J.L., Gomis-Rüth F.X. // Angew. Chem. Int. Ed. Engl. 2014. V. 53. P. 10624–10630. https://doi.org/10.1002/anie.201405727
  131. London R.E. // Structure. 2019. V. 27. P. 420–426. https://doi.org/10.1016/j.str.2018.11.011
  132. Peterson F.C., Elgin E.S., Nelson T.J., Zhang F., Hoeger T.J., Linhardt R.J., Volkman B.F. // J. Biol. Chem. 2004. V. 279. P. 12598–12604. https://doi.org/10.1074/jbc.M311633200
  133. Tuinstra R.L., Peterson F.C., Elgin E.S., Pelzek A.J., Volkman B.F. // Biochemistry. 2007. V. 46. P. 2564–2573. https://doi.org/10.1021/bi602365d
  134. Jaffe E.K. // Trends Biochem. Sci. 2005. V. 30. P. 490–497. https://doi.org/10.1016/j.tibs.2005.07.003
  135. Jaffe E.K., Lawrence S.H. // Arch. Biochem. Biophys. 2012. V. 519. P. 144–153. https://doi.org/10.1016/j.abb.2011.10.010
  136. Guo G.G., Gu M., Etlinger J.D. // J. Biol. Chem. 1994. V. 269. P. 12399–12402.
  137. Li X.C., Gu M.Z., Etlinger J.D. // Biochemistry. 1991. V. 30. P. 9709–9715. https://doi.org/10.1021/bi00104a020

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (247KB)
3.

Жүктеу (316KB)
4.

Жүктеу (221KB)
5.

Жүктеу (130KB)
6.

Жүктеу (401KB)

© Д.А. Коршунов, Е.Е. Середа, И.В. Кондакова, 2023