Extracellular Cold Shock Protein YB-1 Induces Tolerance to GMDP and LPS in Mouse Macrophage Cell Line J774

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cold shock protein YB-1 is involved in the regulation of a huge number of fundamental biological processes. Previously, we showed that YB-1 is also involved in the process of recognition of muramylpeptide GMDP by the innate immune receptor NOD2 and is able upon preliminary administration to protect mice from death in a model of septic shock induced by Escherichia coli bacteria. We hypothesized that its protective effect may be associated with the development of a state of tolerance (“nonresponsiveness”). Changes in the cellular response were assessed by the level of mRNA expression of the target molecules by quantitative PCR analysis combined with reverse transcription. We tested the possibility of tolerance induction by the YB-1 protein in a model system on the J774 mouse macrophage cell line with the participation of E. coli bacterial cell wall components, immunostimulants GMDP (NOD2 receptor agonist) and LPS (TLR4 receptor agonist). Pretreatment of cells with YB-1 resulted in a significant decrease in the level of mRNA expression of pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 in response to further stimulation with GMDP and LPS, as well as significant changes in the expression of mRNA of RIP2 and MyD88 adapter molecules and components of transcriptional factor NF-κB. Our data show that YB-1 is able to induce tolerance to such as GMDP and LPS immunostimulants, apparently by increasing the production of the anti-inflammatory cytokine IL-1Ra and the SOCS1 inhibitor. A more precise characterization of the features of the YB-1-induced tolerogenic immune response requires further research.

About the authors

L. G. Alekseeva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: luda.alekseeva@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

A. G. Laman

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: luda.alekseeva@mail.ru
Russia, 142290, Pushchino, prosp. Nauki 6

E. A. Meshcherykova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: luda.alekseeva@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

A. O. Shepelyakovskaya

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: luda.alekseeva@mail.ru
Russia, 142290, Pushchino, prosp. Nauki 6

F. A. Brovko

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: luda.alekseeva@mail.ru
Russia, 142290, Pushchino, prosp. Nauki 6

V. T. Ivanov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: luda.alekseeva@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

References

  1. Lindquist J.A., Mertens P.R. // Cell Commun. Signal. 2018. V. 16. P. 63. https://doi.org/10.1186/s12964-018-0274-6
  2. Laman A.G., Lathe R., Shepelyakovskaya A.O., Gartseva A., Brovko F.A., Guryanova S.V., Alekseeva L.G., Meshcheryakova E.A., Ivanov V.T. // Innate Immun. 2016. V. 22. P. 666–673. https://doi.org/10.1177/1753425916668982
  3. Laman A.G., Lathe R., Savinov G.V., Shepelyakovskaya A.O., Boziev Kh.M., Baidakova L.K., Chulin A.N., Brovko F.A., Svirshchevskaya E.V., Kotelevtsev Y., Eliseeva I.A., Guryanov S.G., Lyabin D.N., Ovchinnikov L.P., Ivanov V.T. // FEBS Lett. 2015. V. 589. P. 1819–1824. https://doi.org/10.1016/j.febslet.2015.05.028
  4. Weichart D., Gobom J., Klopfleisch S., Häsler R., Gustavsson N., Billmann S., Lehrach H., Seegert D., Schreiber S., Rosenstiel P. // J. Biol. Chem. 2006. V. 281. P. 2380–2389. https://doi.org/10.1074/jbc.M505986200
  5. Алексеева Л.Г., Ламан А.Г., Щепеляковская А.О., Плеханова Н.С., Иванов В.Т. // Биоорг. химия. 2019. Т. 45. С. 404–411. [Alekseeva L.G., Plekhanova N.S., Ivanov V.T., Laman A.G., Shepelyakovskaya A.O. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 285–291.] https://doi.org/10.1134/S1068162019040022
  6. Shepelyakovskaya A.O., Alekseeva L.G., Meshcheryakova E.A., Boziev Kh., Tsitrina A., Ivanov V.T., Brovko F.A., Kotelevtsev Y., Lathe R., Laman A.G. // bioRxiv preprinthttps://doi.org/10.1101/2022.11.09.515841
  7. Hayden M.S., Ghosh S. // Cell. 2008. V. 132. P. 344–362. https://doi.org/10.1016/j.cell.2008.01.020
  8. Nomura F., Akashi S., Sakao Y., Sato S., Kawai T., Matsumoto M., Nakanishi K., Kimoto M., Miyake K., Takeda K., Akira S. // J. Immunol. 2000. V. 164. P. 3476–3479. https://doi.org/10.4049/jimmunol.164.7.3476
  9. Mizel S.B., Snipes J.A. // J. Biol. Chem. 2002. V. 277. P. 22414–22420. https://doi.org/10.1074/jbc.M201762200
  10. Hedl M., Li J., Cho J.H., Abraham C. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 19440–19445. https://doi.org/10.1073/pnas.0706097104
  11. Meshcheryakova E., Guryanova S., Makarov E., Alekseeva L., Andronova T., Ivanov V. // Int. Immunopharmacol. 2001. V. 9–10. P. 1857–1865. https://doi.org/10.1016/s1567-5769(01)00111-4
  12. O’Brien G.C., Wang J.H., Redmond H.P. // J. Immunol. 2005. V. 174. P. 1020–1026. https://doi.org/10.4049/jimmunol.174.2.1020
  13. Huber R., Bikker R., Welz B., Christmann M., Brand K. // J. Immunol. Res. 2017. P. 9570129. https://doi.org/10.1155/2017/9570129
  14. Aneja R., Odoms K., Dunsmore K., Shanley T.P., Wong H.R. // J. Immunol. 2006. V. 177. P. 7184–7192. https://doi.org/10.4049/jimmunol.177.10.7184
  15. Coveney A.P., Wang W., Kelly J., Liu J.H., Blankson S., Wu Q.D., Redmond H.P., Wang J.H. // Sci. Rep. 2015. V. 5. P. 13694. https://doi.org/10.1038/srep13694
  16. Bolhassani A., Rafati S. // Exp. Rev. Vaccines. 2008. V. 8. P. 1185–1199. https://doi.org/10.1586/14760584.7.8.1185
  17. Hsu J.H., Yang R.C., Lin S.J., Liou S.F., Dai Z.K., Yeh J.L., Wu J.R. // Shock. 2014. V. 42. P. 540–547. https://doi.org/10.1097/SHK.0000000000000254
  18. Butcher S.K., O’Carroll C.E., Wells C.A., Carmody R.J. // Front. Immunol. 2018. V. 9. P. 933. https://doi.org/10.3389/fimmu.2018.00933
  19. Fritz J.H., Girardin S.E., Fitting C., Werts C., Mengin-Lecreulx D., Caroff M., Cavaillon J.M., Philpott D.J., Adib-Conquy M. // Eur. J. Immunol. 2005. V. 35. P. 2459–2470. https://doi.org/10.1002/eji.200526286
  20. Wang J., Djudjaj S., Gibbert L., Lennartz V., Breitkopf D.M., Rauen T., Hermert D., Martin I.V., Boor P., Braun G.S., Floege J., Ostendorf T., Raffetseder U. // J. Cell. Mol. Med. 2017. V. 12. P. 3494–3505. https://doi.org/10.1111/jcmm.13260
  21. Hu J., Wang G., Liu X., Zhou L., Jiang M., Yang L. // PLoS One. 2014. V. 9. e87528. https://doi.org/10.1371/journal.pone.0087528
  22. Xiong Y., Medvedev A.E. // J. Leukoc. Biol. 2011. V. 90. P. 1141–1148. https://doi.org/10.1189/jlb.0611273
  23. Savinov G.V., Shepelyakovskaya A.O., Boziev Kh.M., Brovko F.A., Laman A.G. // Biochemistry (Moscow). 2014. V. 79. P. 131–138. https://doi.org/10.1134/S0006297914020060
  24. Livak K.J., Schmittgen T.D. // Methods. 2001. V. 25. P. 402–408. https://doi.org/10.1006/meth.2001.1262

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (133KB)
3.

Download (136KB)
4.

Download (144KB)
5.

Download (167KB)
6.

Download (171KB)

Copyright (c) 2023 Л.Г. Алексеева, А.Г. Ламан, Е.А. Мещерякова, А.О. Шепеляковская, Ф.А. Бровко, В.Т. Иванов