Extracellular Cold Shock Protein YB-1 Induces Tolerance to GMDP and LPS in Mouse Macrophage Cell Line J774
- Authors: Alekseeva L.G.1, Laman A.G.2, Meshcherykova E.A.1, Shepelyakovskaya A.O.2, Brovko F.A.2, Ivanov V.T.1
-
Affiliations:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Issue: Vol 49, No 4 (2023)
- Pages: 384-391
- Section: Articles
- URL: https://archivog.com/0132-3423/article/view/670583
- DOI: https://doi.org/10.31857/S013234232303003X
- EDN: https://elibrary.ru/PDIGUQ
- ID: 670583
Cite item
Abstract
Cold shock protein YB-1 is involved in the regulation of a huge number of fundamental biological processes. Previously, we showed that YB-1 is also involved in the process of recognition of muramylpeptide GMDP by the innate immune receptor NOD2 and is able upon preliminary administration to protect mice from death in a model of septic shock induced by Escherichia coli bacteria. We hypothesized that its protective effect may be associated with the development of a state of tolerance (“nonresponsiveness”). Changes in the cellular response were assessed by the level of mRNA expression of the target molecules by quantitative PCR analysis combined with reverse transcription. We tested the possibility of tolerance induction by the YB-1 protein in a model system on the J774 mouse macrophage cell line with the participation of E. coli bacterial cell wall components, immunostimulants GMDP (NOD2 receptor agonist) and LPS (TLR4 receptor agonist). Pretreatment of cells with YB-1 resulted in a significant decrease in the level of mRNA expression of pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 in response to further stimulation with GMDP and LPS, as well as significant changes in the expression of mRNA of RIP2 and MyD88 adapter molecules and components of transcriptional factor NF-κB. Our data show that YB-1 is able to induce tolerance to such as GMDP and LPS immunostimulants, apparently by increasing the production of the anti-inflammatory cytokine IL-1Ra and the SOCS1 inhibitor. A more precise characterization of the features of the YB-1-induced tolerogenic immune response requires further research.
Keywords
About the authors
L. G. Alekseeva
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: luda.alekseeva@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
A. G. Laman
Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: luda.alekseeva@mail.ru
Russia, 142290, Pushchino, prosp. Nauki 6
E. A. Meshcherykova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: luda.alekseeva@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
A. O. Shepelyakovskaya
Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: luda.alekseeva@mail.ru
Russia, 142290, Pushchino, prosp. Nauki 6
F. A. Brovko
Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: luda.alekseeva@mail.ru
Russia, 142290, Pushchino, prosp. Nauki 6
V. T. Ivanov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: luda.alekseeva@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
References
- Lindquist J.A., Mertens P.R. // Cell Commun. Signal. 2018. V. 16. P. 63. https://doi.org/10.1186/s12964-018-0274-6
- Laman A.G., Lathe R., Shepelyakovskaya A.O., Gartseva A., Brovko F.A., Guryanova S.V., Alekseeva L.G., Meshcheryakova E.A., Ivanov V.T. // Innate Immun. 2016. V. 22. P. 666–673. https://doi.org/10.1177/1753425916668982
- Laman A.G., Lathe R., Savinov G.V., Shepelyakovskaya A.O., Boziev Kh.M., Baidakova L.K., Chulin A.N., Brovko F.A., Svirshchevskaya E.V., Kotelevtsev Y., Eliseeva I.A., Guryanov S.G., Lyabin D.N., Ovchinnikov L.P., Ivanov V.T. // FEBS Lett. 2015. V. 589. P. 1819–1824. https://doi.org/10.1016/j.febslet.2015.05.028
- Weichart D., Gobom J., Klopfleisch S., Häsler R., Gustavsson N., Billmann S., Lehrach H., Seegert D., Schreiber S., Rosenstiel P. // J. Biol. Chem. 2006. V. 281. P. 2380–2389. https://doi.org/10.1074/jbc.M505986200
- Алексеева Л.Г., Ламан А.Г., Щепеляковская А.О., Плеханова Н.С., Иванов В.Т. // Биоорг. химия. 2019. Т. 45. С. 404–411. [Alekseeva L.G., Plekhanova N.S., Ivanov V.T., Laman A.G., Shepelyakovskaya A.O. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 285–291.] https://doi.org/10.1134/S1068162019040022
- Shepelyakovskaya A.O., Alekseeva L.G., Meshcheryakova E.A., Boziev Kh., Tsitrina A., Ivanov V.T., Brovko F.A., Kotelevtsev Y., Lathe R., Laman A.G. // bioRxiv preprinthttps://doi.org/10.1101/2022.11.09.515841
- Hayden M.S., Ghosh S. // Cell. 2008. V. 132. P. 344–362. https://doi.org/10.1016/j.cell.2008.01.020
- Nomura F., Akashi S., Sakao Y., Sato S., Kawai T., Matsumoto M., Nakanishi K., Kimoto M., Miyake K., Takeda K., Akira S. // J. Immunol. 2000. V. 164. P. 3476–3479. https://doi.org/10.4049/jimmunol.164.7.3476
- Mizel S.B., Snipes J.A. // J. Biol. Chem. 2002. V. 277. P. 22414–22420. https://doi.org/10.1074/jbc.M201762200
- Hedl M., Li J., Cho J.H., Abraham C. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 19440–19445. https://doi.org/10.1073/pnas.0706097104
- Meshcheryakova E., Guryanova S., Makarov E., Alekseeva L., Andronova T., Ivanov V. // Int. Immunopharmacol. 2001. V. 9–10. P. 1857–1865. https://doi.org/10.1016/s1567-5769(01)00111-4
- O’Brien G.C., Wang J.H., Redmond H.P. // J. Immunol. 2005. V. 174. P. 1020–1026. https://doi.org/10.4049/jimmunol.174.2.1020
- Huber R., Bikker R., Welz B., Christmann M., Brand K. // J. Immunol. Res. 2017. P. 9570129. https://doi.org/10.1155/2017/9570129
- Aneja R., Odoms K., Dunsmore K., Shanley T.P., Wong H.R. // J. Immunol. 2006. V. 177. P. 7184–7192. https://doi.org/10.4049/jimmunol.177.10.7184
- Coveney A.P., Wang W., Kelly J., Liu J.H., Blankson S., Wu Q.D., Redmond H.P., Wang J.H. // Sci. Rep. 2015. V. 5. P. 13694. https://doi.org/10.1038/srep13694
- Bolhassani A., Rafati S. // Exp. Rev. Vaccines. 2008. V. 8. P. 1185–1199. https://doi.org/10.1586/14760584.7.8.1185
- Hsu J.H., Yang R.C., Lin S.J., Liou S.F., Dai Z.K., Yeh J.L., Wu J.R. // Shock. 2014. V. 42. P. 540–547. https://doi.org/10.1097/SHK.0000000000000254
- Butcher S.K., O’Carroll C.E., Wells C.A., Carmody R.J. // Front. Immunol. 2018. V. 9. P. 933. https://doi.org/10.3389/fimmu.2018.00933
- Fritz J.H., Girardin S.E., Fitting C., Werts C., Mengin-Lecreulx D., Caroff M., Cavaillon J.M., Philpott D.J., Adib-Conquy M. // Eur. J. Immunol. 2005. V. 35. P. 2459–2470. https://doi.org/10.1002/eji.200526286
- Wang J., Djudjaj S., Gibbert L., Lennartz V., Breitkopf D.M., Rauen T., Hermert D., Martin I.V., Boor P., Braun G.S., Floege J., Ostendorf T., Raffetseder U. // J. Cell. Mol. Med. 2017. V. 12. P. 3494–3505. https://doi.org/10.1111/jcmm.13260
- Hu J., Wang G., Liu X., Zhou L., Jiang M., Yang L. // PLoS One. 2014. V. 9. e87528. https://doi.org/10.1371/journal.pone.0087528
- Xiong Y., Medvedev A.E. // J. Leukoc. Biol. 2011. V. 90. P. 1141–1148. https://doi.org/10.1189/jlb.0611273
- Savinov G.V., Shepelyakovskaya A.O., Boziev Kh.M., Brovko F.A., Laman A.G. // Biochemistry (Moscow). 2014. V. 79. P. 131–138. https://doi.org/10.1134/S0006297914020060
- Livak K.J., Schmittgen T.D. // Methods. 2001. V. 25. P. 402–408. https://doi.org/10.1006/meth.2001.1262
Supplementary files
