Structural and Functional Features of Ketoso-3-Epimerases and Their Use in Production of D-Allulose
- Authors: Ivanova N.S.1, Kulminskaya A.A.1,2, Shvetsova S.V.1,2,3
-
Affiliations:
- Kurchatov Genomic Center – PNPI
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”
- Peter the Great St. Petersburg Polytechnic University
- Issue: Vol 49, No 4 (2023)
- Pages: 348-359
- Section: Articles
- URL: https://archivog.com/0132-3423/article/view/670577
- DOI: https://doi.org/10.31857/S0132342323040346
- EDN: https://elibrary.ru/ODGVQI
- ID: 670577
Cite item
Abstract
Rare sugars attract more and more attention as safe, low-calorie sweeteners and functional compounds in the food, pharmaceutical and medical industries. The potential of the rare sugar D-allulose has been proven in a large number of theoretical and applied works but the high cost of its production is a limitation factor for its large-scall production. Epimerization reactions of available sugars leading to the production of D-allulose are catalyzed by enzymes consisting the epimerase group, namely, ketose-3-epimerases. The key goals of ongoing studies on the ketose-3-epimerase family enzymes are focused on the exact mechanisms of their work, improvement of the enzymatic activity and stability in order to achieve high efficiency in the production of D‑allulose. The present review summarizes the latest innovative developments in use of ketose-3-epimerases, as well as optimization of the enzymatic processes of D-allulose production. The structural features of the main enzymes used in the production of this rare sugar, variants of molecular modifications of biocatalysts and prospects for the practical use of the enzyme pathways discussed in this work are considered.
About the authors
N. S. Ivanova
Kurchatov Genomic Center – PNPI
Email: shvetsova_sv@pnpi.nrcki.ru
Russia, 188300, Gatchina, mkr. Orlova Roshcha 1
A. A. Kulminskaya
Kurchatov Genomic Center – PNPI; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”
Email: shvetsova_sv@pnpi.nrcki.ru
Russia, 188300, Gatchina, mkr. Orlova Roshcha 1; Russia, 188300, Gatchina, mkr. Orlova Roshcha 1
S. V. Shvetsova
Kurchatov Genomic Center – PNPI; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”; Peter the Great St. Petersburg Polytechnic University
Email: shvetsova_sv@pnpi.nrcki.ru
Russia, 188300, Gatchina, mkr. Orlova Roshcha 1; Russia, 188300, Gatchina, mkr. Orlova Roshcha 1; Russia, 195251, St. Petersburg, ul. Polytechnicheskaya 29
References
- Karabinos J.V. // Adv. Carbohydr. Chem. 1952. V. 7. P. 99–136. https://doi.org/10.1016/s0096-5332(08)60083-1
- Oshima H., Kimura I., Izumori K. // Food Sci. Technol. Res. 2006. V. 12. P. 137–143. https://doi.org/10.3136/fstr.12.137
- Fukada K., Ishii T., Tanaka K., Yamaji M., Yamaoka Y., Kobashi K., Izumori K. // Bull. Chem. Soc. Jpn. 2010. V. 83. P. 1193–1197. https://doi.org/10.1246/bcsj.20100148
- O’Charoen S., Hayakawa S., Ogawa M. // Int. J. Food Sci. Technol. 2014. V. 50. P. 194–202. https://doi.org/10.1111/ijfs.12607
- Zhang W., Yu S., Zhang T., Jiang B., Mu W. // Trends Food Sci. Technol. 2016. V. 54. P. 127–137. https://doi.org/10.1016/j.tifs.2016.06.004
- Mu W., Zhang W., Feng Y., Jiang B., Zhou L. // Appl. Microbiol. Biotechnol. 2012. V. 94. P. 1461–1467. https://doi.org/10.1007/s00253-012-4093-1
- Nishii N., Nomizo T., Takashima S., Matsubara T., Tokuda M., Kitagawa H. // J. Vet. Med. Sci. 2016. V. 78. P. 1079–1083. https://doi.org/10.1292/jvms.15-0676
- Yagi K., Matsuo T. // J. Clin. Biochem. Nutr. 2009. V. 45. P. 271–277. https://doi.org/10.3164/jcbn.08-191
- Harada M., Kondo E., Hayashi H., Suezawa C., Suguri S., Arai M. // Parasitol. Res. 2012. V. 110. P. 1565–1567. https://doi.org/10.1007/s00436-011-2660-5
- Chung M.-Y., Oh D.-K., Lee K.W. // J. Agric. Food Chem. 2012. V. 60. P. 863–869. https://doi.org/10.1021/jf204050w
- Murao K., Yu X., Cao W.M., Imachi H., Chen K., Muraoka T., Kitanaka N., Li J., Ahmed R.A.M., Matsumoto K., Nishiuchi T., Tokuda M., Ishida T. // Life Sci. 2007. V. 81. P. 592–599. https://doi.org/10.1016/j.lfs.2007.06.019
- Iida T., Kishimoto Y., Yoshikawa Y., Hayashi N., Okuma K., Tohi M., Yagi K., Matsuo T., Izumori K. // J. Nutr. Sci. Vitaminol. (Tokyo). 2008. V. 54. P. 511–514. https://doi.org/10.3177/jnsv.54.511
- Hayashi N., Iida T., Yamada T., Okuma K., Takehara I., Yamamoto T., Yamada K., Tokuda M. // Biosci. Biotechnol. Biochem. 2010. V. 74. P. 510–519. https://doi.org/10.1271/bbb.90707
- Hossain M.A., Kitagaki S., Nakano D., Nishiyama A., Funamoto Y., Matsunaga T., Tsukamoto I., Yamaguchi F., Kamitori K., Dong Y., Hirata Y., Murao K., Toyoda Y., Tokuda M. // Biochem. Biophys. Res. Commun. 2011. V. 405. P. 7–12. https://doi.org/10.1016/j.bbrc.2010.12.091
- Baek S.H., Park S.J., Lee H.G. // J. Food Sci. 2010. V. 75. P. H49–H53. https://doi.org/10.1111/j.1750-3841.2009.01434.x
- Itoh K., Mizuno S., Hama S., Oshima W., Kawamata M., Hossain A., Ishihara Y., Tokuda M. // J. Food Sci. 2015. V. 80. P. H1619–H1626. https://doi.org/10.1111/1750-3841.12908
- Chen J., Huang W., Jiang B. // FASEB J. 2017. V. 31. P. 798.1. https://doi.org/10.1096/fasebj.31.1_supplement.798.1
- Ochiai M., Onishi K., Yamada T., Iida T., Matsuo T. // Int. J. Food Sci. Nutr. 2014. V. 65. P. 245–250. https://doi.org/10.3109/09637486.2013.845653
- Iwasaki Y., Sendo M., Dezaki K., Hira T., Sato T., Nakata M., Goswami C., Aoki R., Arai T., Kumari P., Hayakawa M., Masuda C., Okada T., Hara H., Drucker D.J., Yamada Y., Tokuda M., Yada T. // Nat. Commun. 2018. V. 9. P. 113. https://doi.org/10.1038/s41467-017-02488-y
- Matsuo T., Suzuki H., Hashiguchi M., Izumori K. // J. Nutr. Sci. Vitaminol. (Tokyo). 2002. V. 48. P. 77–80. https://doi.org/10.3177/jnsv.48.77
- Matsuo T., Tanaka T., Hashiguchi M., Izumori K., Suzuki H. // Asia Pac. J. Clin. Nutr. 2003. V. 12. P. 225–231.
- Iida T., Hayashi N., Yamada T., Yoshikawa Y., Miyazato S., Kishimoto Y., Okuma K., Tokuda M., Izumori K. // Metabolism. 2010. V. 59. P. 206–214. https://doi.org/10.1016/j.metabol.2009.07.018
- Kimura T., Kanasaki A., Hayashi N., Yamada T., Iida T., Nagata Y., Okuma K. // Nutrition. 2017. V. 43–44. P. 16–20. https://doi.org/10.1016/j.nut.2017.06.007
- Hofer S.J., Davinelli S., Bergmann M., Scapagnini G., Madeo F. // Front. Nutr. 2021. V. 8. P. 717343. https://doi.org/10.3389/fnut.2021.717343
- Mooradian A.D., Smith M., Tokuda M. // Clin. Nutr. ESPEN. 2017. V. 18. P. 1–8. https://doi.org/10.1016/j.clnesp.2017.01.004
- Lê K.A., Robin F., Roger O. // Curr. Opin. Clin. Nutr. Metab. Care. 2016. V. 19. P. 310–315. https://doi.org/10.1097/mco.0000000000000288
- Bilik V., Tihlarik K. // Chem. Pap. 1973. V. 28. P. 106–109. https://chempap.org/file_access.php?file=281a106.pdf
- McDonald E.J. // Carbohydr. Res. 1967. V. 5. P. 106–108. https://doi.org/10.1016/0008-6215(67)85014-6
- Doner L.W. // Carbohydr. Res. 1979. V. 70. P. 209–216. https://doi.org/10.1016/S0008-6215(00)87101-3
- Kumar S., Sharma S., Kansal S.K., Elumalai S. // ACS Omega. 2020. V. 5. P. 2406–2418. https://doi.org/10.1021/acsomega.9b03918
- Izumori K., Khan A.R., Okaya H., Tsumura T. // Biosci. Biotechnol. Biochem. 1993. V. 57. P. 1037–1039. https://doi.org/10.1271/bbb.57.1037
- Itoh H., Okaya H., Khan A.R., Tajima S., Hayakawa S., Izumori K. // Biosci. Biotechnol. Biochem. 1994. V. 58. P. 2168–2171. https://doi.org/10.1271/bbb.58.2168
- Kim H.-J., Hyun E.-K., Kim Y.-S., Lee Y.-J., Oh D.-K. // Appl. Environ. Microbiol. 2006. V. 72. P. 981–985. https://doi.org/10.1128/aem.72.2.981-985.2006
- Zhang L., Mu W., Jiang B., Zhang T. // Biotechnol. Lett. 2009. V. 31. P. 857–862. https://doi.org/10.1007/s10529-009-9942-3
- Uechi K., Takata G., Fukai Y., Yoshihara A., Morimoto K. // Biosci. Biotechnol. Biochem. 2013. V. 77. P. 511–515. https://doi.org/10.1271/bbb.120745
- Zhang W., Li H., Zhang T., Jiang B., Zhou L., Mu W. // J. Mol. Catal. B: Enzym. 2015. V. 120. P. 68–74. https://doi.org/10.1016/j.molcatb.2015.05.018
- Mu W., Chu F., Xing Q., Yu S., Zhou L., Jiang B. // J. Agric. Food Chem. 2011. V. 59. P. 7785–7792. https://doi.org/10.1021/jf201356q
- Li C., Li L., Feng Z., Guan L., Lu F., Qin H.-M. // Food Chem. 2021. V. 357. P. 129746. https://doi.org/10.1016/j.foodchem.2021.129746
- Zhu Z., Li C., Liu X., Gao D., Wang X., Tanokura M., Qin H.-M., Lu F. // RSC Adv. 2019. V. 9. P. 2919–2927. https://doi.org/10.1039/c8ra10029b
- Chen J., Chen D., Ke M., Ye S., Wang X., Zhang W., Mu W. // Mol. Biotechnol. 2021. V. 63. P. 534–543. https://doi.org/10.1007/s12033-021-00320-z
- Patel S.N., Kaushal G., Singh S.P. // Microb. Cell Fact. 2021. V. 20. P. 60. https://doi.org/10.1186/s12934-021-01550-1
- Patel S.N., Kaushal G., Singh S.P. // Appl. Environ. Microbiol. 2020. V. 86. P. e02605-19. https://doi.org/10.1128/AEM.02605-19
- Zhu Z., Li L., Zhang W., Li C., Mao S., Lu F., Qin H.-M. // Enzyme Microb. Technol. 2021. V. 149. P. 109850. https://doi.org/10.1016/j.enzmictec.2021.109850
- Mu W., Zhang W., Fang D., Zhou L., Jiang B., Zhang T. // Biotechnol. Lett. 2013. V. 35. P. 1481–1486. https://doi.org/10.1007/s10529-013-1230-6
- Park C.-S., Kim T., Hong S.-H., Shin K.-C., Kim K.-R., Oh D.-K. // PLoS One. 2016. V. 11. P. e0160044. https://doi.org/10.1371/journal.pone.0160044
- Tseng W.-C., Chen C.-N., Hsu C.-T., Lee H.-C., Fang H.-Y., Wang M.-J., Wu Y.-H., Fang T.-Y. // Int. J. Biol. Macromol. 2018. V. 112. P. 767–774. https://doi.org/10.1016/j.ijbiomac.2018.02.036
- Yoshihara A., Kozakai T., Shintani T., Matsutani R., Ohtani K., Iida T., Akimitsu K., Izumori K., Gullapalli P.K. // J. Biosci. Bioeng. 2017. V. 123. P. 170–176. https://doi.org/10.1016/j.jbiosc.2016.09.004
- Li S., Chen Z., Zhang W., Guang C., Mu W. // Int. J. Biol. Macromol. 2019. V. 138. P. 536–545. https://doi.org/10.1016/j.ijbiomac.2019.07.112
- Jia M., Mu W., Chu F., Zhang X., Jiang B., Zhou L.L., Zhang T. // Appl. Microbiol. Biotechnol. 2014. V. 98. P. 717–725. https://doi.org/10.1007/s00253-013-4924-8
- Zhang W., Fang D., Xing Q., Zhou L., Jiang B., Mu W. // PLoS One. 2013. V. 8. P. e62987. https://doi.org/10.1371/journal.pone.0062987
- Zhang W., Fang D., Zhang T., Zhou L., Jiang B., Mu W. // J. Agric. Food Chem. 2013. V. 61. P. 11468–11476. https://doi.org/10.1021/jf4035817
- Jia D.-X., Sun C.-Y., Jin Y.-T., Liu Z.-Q., Zheng Y.-G., Li M., Wang H.-Y., Chen D.-S. // Enzyme Microb. Technol. 2021. V. 148. P. 109816. https://doi.org/10.1016/j.enzmictec.2021.109816
- Yang J., Tian C., Zhang T., Ren C., Zhu Y., Zeng Y., Men Y., Sun Y., Ma Y. // Biotechnol. Bioeng. 2019. V. 116. P. 745–756. https://doi.org/10.1002/bit.26909
- Mao S., Cheng X., Zhu Z., Chen Y., Li C., Zhu M., Liu X., Lu F., Qin H.-M. // Enzyme Microb. Technol. 2020. V. 132. P. 109441. https://doi.org/10.1016/j.enzmictec.2019.109441
- Zhu Y., Men Y., Bai W., Li X., Zhang L., Sun Y., Ma Y. // Biotechnol. Lett. 2012. V. 34. P. 1901–1906. https://doi.org/10.1007/s10529-012-0986-4
- Oh D.-K., Kim N.-H., Kim H.-J., Park C.-S., Kim S.-W., Ko M., Park B., Jung M., Yoon K.-H. // World J. Microbiol. Biotechnol. 2007. V. 23. P. 559–563. https://doi.org/10.1007/s11274-006-9265-7
- Zhu Z., Gao D., Li C., Chen Y., Zhu M., Liu X., Tanokura M., Qin H.-M., Lu F. // Microb. Cell Fact. 2019. V. 18. P. 59. https://doi.org/10.1186/s12934-019-1107-z
- Zhang W., Zhang T., Jiang B., Mu W. // J. Sci. Food Agric. 2016. V. 96. P. 49–56. https://doi.org/10.1002/jsfa.7187
- Patel S.N., Sharma M., Lata K., Singh U., Kumar V., Sangwan R.S., Singh S.P. // Bioresour. Technol. 2016. V. 216. P. 121–127. https://doi.org/10.1016/j.biortech.2016.05.053
- Chan H.-C., Zhu Y., Hu Y., Ko T.-P., Huang C.-H., Ren F., Chen C.-C., Ma Y., Guo R.-T., Sun Y. // Protein Cell. 2012. V. 3. P. 123–131. https://doi.org/10.1007/s13238-012-2026-5
- Van Overtveldt S., Verhaeghe T., Joosten H.-J., van den Bergh T., Beerens K., Desmet T. // Biotechnol. Adv. 2015. V. 33. P. 1814–1828. https://doi.org/10.1016/j.biotechadv.2015.10.010
- Uechi K., Sakuraba H., Yoshihara A., Morimoto K., Takata G. // Acta Crystallogr. D Biol. Crystallogr. 2013. V. 69. P. 2330–2339. https://doi.org/10.1107/s0907444913021665
- Yoshida H., Yamada M., Nishitani T., Takada G., Izumori K., Kamitori S. // J. Mol. Biol. 2007. V. 374. P. 443–453. https://doi.org/10.1016/j.jmb.2007.09.033
- Kim K., Kim H.-J., Oh D.-K., Cha S.-S., Rhee S. // J. Mol. Biol. 2006. V. 361. P. 920–931. https://doi.org/10.1016/j.jmb.2006.06.069
- Qi Z., Zhu Z., Wang J., Li S., Guo Q., Xu P., Lu F., Qin H.-M. // Microb. Cell Fact. 2017. V. 16. P. 193. https://doi.org/10.1186/s12934-017-0808-4
- Yoshida H., Yoshihara A., Gullapalli P.K., Ohtani K., Akimitsu K., Izumori K., Kamitori S. // Acta Crystallogr. F Struct. Biol. Commun. 2018. V. 74. P. 669–676. https://doi.org/10.1107/s2053230x18011706
- Carrell H.L., Glusker J.P., Burger V., Manfre F., Tritsch D., Biellmann J.F. // Proc. Natl. Acad. Sci. USA. 1989. V. 86. P. 4440–4444. https://doi.org/10.1073/pnas.86.12.4440
- Carrell H.L., Hoier H., Glusker J.P. // Acta Crystallogr. D Biol. Crystallogr. 1994. V. 50. P. 113–123. https://doi.org/10.1107/s0907444993009345
- Collyer C.A., Henrick K., Blow D.M. // J. Mol. Biol. 1990. V. 212. P. 211–235. https://doi.org/10.1016/0022-2836(90)90316-e
- Whitlow M., Howard A.J., Finzel B.C., Poulos T.L., Winborne E., Gilliland G.L. // Proteins. 1991. V. 9. P. 153–173. https://doi.org/10.1002/prot.340090302
- Fenn T.D., Ringe D., Petsko G.A. // Biochemistry. 2004. V. 43. P. 6464–6474. https://doi.org/10.1021/bi049812o
- Kovalevsky A.Y., Hanson L., Fisher S.Z., Mustyakimov M., Mason S.A., Forsyth V.T., Blakeley M.P., Keen D.A., Wagner T., Carrell H.L., Katz A.K., Glusker J.P., Langan P. // Structure. 2010. V. 18. P. 688–699. https://doi.org/10.1016/j.str.2010.03.011
- Yoshida H., Yamaji M., Ishii T., Izumori K., Kamitori S. // FEBS J. 2010. V. 277. P. 1045–1057. https://doi.org/10.1111/j.1742-4658.2009.07548.x
- Yoshida H., Yoshihara A., Teraoka M., Terami Y., Takata G., Izumori K., Kamitori S. // FEBS J. 2014. V. 281. P. 3150–3164. https://doi.org/10.1111/febs.12850
- Yoshida H., Yoshihara A., Teraoka M., Yamashita S., Izumori K., Kamitori S. // FEBS Open Bio. 2012. V. 3. P. 35–40. https://doi.org/10.1016/j.fob.2012.11.008
- Munshi P., Snell E.H., van der Woerd M.J., Judge R.A., Myles D.A.A., Ren Z., Meilleur F. // Acta Cryst. D Biol. Crystallogr. 2014. V. 70. P. 414–420. https://doi.org/10.1107/s1399004713029684
- Langan P., Sangha A.K., Wymore T., Parks J.M., Yang Z.K., Hanson B.L., Fisher Z., Mason S.A., Blakeley M.P., Forsyth V.T., Glusker J.P., Carrell H.L., Smith J.C., Keen D.A., Graham D.E., Kovalevsky A. // Structure. 2014. V. 22. P. 1287–1300. https://doi.org/10.1016/j.str.2014.07.002
- Terami Y., Yoshida H., Uechi K., Morimoto K., Takata G., Kamitori S. // Appl. Microbiol. Biotechnol. 2015. V. 99. P. 6303–6313. https://doi.org/10.1007/s00253-015-6417-4
- Yoshida H., Yamada M., Nishitani T., Takada G., Izumori K., Kamitori S. // Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2007. V. 63. P. 123–125. https://doi.org/10.1107/s1744309107001169
- Yoshida H., Yoshihara A., Ishii T., Izumori K., Kamitori S. // Appl. Microbiol. Biotechnol. 2016. V. 100. P. 10403–10415. https://doi.org/10.1007/s00253-016-7673-7
- Okada G., Hehre E.J. // J. Biol. Chem. 1974. V. 249. P. 126–135. https://doi.org/10.1016/S0021-9258(19)43100-1
- Bosshart A., Panke S., Bechtold M. // Angew. Chem. Int. Ed. Engl. 2013. V. 52. P. 9673–9676. https://doi.org/10.1002/anie.201304141
- Bosshart A., Hee C.S., Bechtold M., Schirmer T., Panke S. // Chembiochem. 2015. V. 16. P. 592–601. https://doi.org/10.1002/cbic.201402620
- Zhang W., Zhang Y., Huang J., Chen Z., Zhang T., Guang C., Mu W. // J. Agric. Food Chem. 2018. V. 66. P. 5593–5601. https://doi.org/10.1021/acs.jafc.8b01200
- Zhang W., Jia M., Yu S., Zhang T., Zhou L., Jiang B., Mu W. // J. Agric. Food Chem. 2016. V. 64. P. 3386–3393. https://doi.org/10.1021/acs.jafc.6b01058
- Choi J.-G., Ju Y.-H., Yeom S.-J., Oh D.-K. // Appl. Environ. Microbiol. 2011. V. 77. P. 7316–7320. https://doi.org/10.1128/aem.05566-11
Supplementary files
