Condensates of SARS-CoV-2 Nucleoprotein on Viral RNA and Their Small Molecule Modulators
- Authors: Svetlova J.I.1, Pavlova I.I.1,2, Aralov A.V.3, Varizhuk A.M.1,2
-
Affiliations:
- Federal Research and Clinical Center of Physical-Chemical Medicine
- Moscow Institute of Physics and Technology
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Issue: Vol 49, No 5 (2023)
- Pages: 443-454
- Section: Articles
- URL: https://archivog.com/0132-3423/article/view/670555
- DOI: https://doi.org/10.31857/S0132342323050081
- EDN: https://elibrary.ru/BKSUBV
- ID: 670555
Cite item
Abstract
Several types of biopolymers undergo liquid-liquid phase separation (form condensates) in aqueous solutions, and this phenomenon has been characterized in detail for proteins with intrinsically disordered regions. One example of such proteins is the nucleocapsid (N) protein of the severe acute respiratory syndrome coronavirus 2. In this review, we analyzed available data on N-protein separation in the presence of viral RNA. Particular attention was paid to transient contacts within the condensates and the N-protein/RNA fragments that form these contacts. We also discussed the presumed role of the condensates in the SARS-CoV-2 life cycle and summarized their influence on the host protective machinery. Finally, we commented on the possibility of regulating the viral condensates using synthetic or native small molecules (phase separation modulators), which can provide a new option in the design of antiviral agents.
About the authors
J. I. Svetlova
Federal Research and Clinical Center of Physical-Chemical Medicine
Email: annavarizhuk@rcpcm.org
Russia, 119435, Moscow, ul. Malaya Pirogovskaya 1a
Iu. I. Pavlova
Federal Research and Clinical Center of Physical-Chemical Medicine; Moscow Institute of Physics and Technology
Email: annavarizhuk@rcpcm.org
Russia, 119435, Moscow, ul. Malaya Pirogovskaya 1a; Russia, 141701, Dolgoprudny, Institutskii per. 9
A. V. Aralov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: annavarizhuk@rcpcm.org
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
A. M. Varizhuk
Federal Research and Clinical Center of Physical-Chemical Medicine; Moscow Institute of Physics and Technology
Email: annavarizhuk@rcpcm.org
Russia, 119435, Moscow, ul. Malaya Pirogovskaya 1a; Russia, 141701, Dolgoprudny, Institutskii per. 9
References
- Aleem A., Akbar Samad A.B., Slenker A.K. // Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against Coronavirus (COVID-19). In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022. https://pubmed.ncbi.nlm.nih.gov/34033342/
- Huang Y., Yang C., Xu X., Xu W., Liu S. // Acta Pharmacol. Sin. 2020. V. 41. P. 1141–1149. https://doi.org/10.1038/s41401-020-0485-4
- Ullrich S., Nitsche C. // Bioorg. Med. Chem. Lett. 2020. V. 30. P. 127377. https://doi.org/10.1016/j.bmcl.2020.127377
- Uengwetwanit T., Chutiwitoonchai N., Wichapong K., Karoonuthaisiri N. // Comput. Struct. Biotechnol. J. 2022. V. 20. P. 882–890. https://doi.org/10.1016/j.csbj.2022.02.001
- Bai Z., Cao Y., Liu W., Li J. // Viruses. 2022. V. 13. P. 1115. https://doi.org/10.3390/v13061115
- Yao H., Song Y., Chen Y., Wu N., Xu J., Sun C., Zhang J., Weng T., Zhang Z., Wu Z., Cheng L., Shi D., Lu X., Lei J., Crispin M., Shi Y., Li L., Li S. // Cell. 2020. V. 183. P. 730–738.E13. https://doi.org/10.1016/j.cell.2020.09.018
- Lu S., Ye Q., Singh D., Cao Y., Diedrich J.K., Yates III J.R., Villa E., Cleveland D.W., Corbett K.D. // Nat. Commun. 2021. V. 12. P. 502. https://doi.org/10.1038/s41467-020-20768-y
- Cubuk J., Alston J.J., Incicco J.J., Singh S., Stuchell-Brereton M.D., Ward M.D., Zimmerman M.I., Vithani N., Griffith D., Wagoner J.A., Bowman G.R., Hall K.B., Soranno A., Holehouse A.S. // Nat. Commun. 2021. V. 12. P. 1936. https://doi.org/10.1038/s41467-021-21953-3
- Wang B., Zhang L., Dai T., Qin Z., Lu H., Zhang L., Zhou F. // Signal Transduct. Target. Ther. 2021. V. 6. P. 290. https://doi.org/10.1038/s41392-021-00678-1
- Li H., Ernst C., Kolonko-Adamska M., Man J., Parissi V., Wai-Lung Ng B. // Trends Microbiol. 2022. V. 30. P. 1217–1231. https://doi.org/10.1016/j.tim.2022.06.005
- Bäuerlein F.J.B., Fernández-Busnadiego R., Baumeister W. // Trends Cell. Biol. 2020. V. 30. P. 951–966. https://doi.org/10.1016/j.tcb.2020.08.007
- Savastano A., Ibáñez de Opakua A., Rankovic M., Zweckstetter M. // Nat. Commun. 2020. V. 11. P. 6041. https://doi.org/10.1038/s41467-020-19843-1
- Cascarina S.M., Ross E.D. // FASEB J. 2020. V. 34. P. 9832–9842. https://doi.org/10.1096/fj.202001351
- Cascarina S.M., Ross E.D. // J. Biol. Chem. 2022. V. 298. P. 101677. https://doi.org/10.1016/j.jbc.2022.101677
- Dang M., Song J. // Biophys. Rev. 2022. V. 14. P. 709–715. https://doi.org/10.1007/s12551-022-00957-3
- Alberti S., Gladfelter A., Mittag T. // Cell. 2019. V. 176. P. 419–434. https://doi.org/10.1016/j.cell.2018.12.035
- Abyzov A., Blackledge M., Zweckstetter M. // Chem. Rev. 2022. V. 122. P. 6719–6748. https://doi.org/10.1021/acs.chemrev.1c00774
- Titus A.R., Ferreira L.A., Belgovskiy A.I., Kooijman E.E., Mann E.K., Mann J.A., Meyer W.V., Smart A.E., Uversky V.N., Zaslavsky B.Y. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 4574–4580. https://doi.org/10.1039/C9CP05810A
- Jo Y., Jang J., Song D., Park H., Jung Y. // Chem. Sci. 2022. V. 13. P. 522–530. https://doi.org/10.1039/D1SC05672G
- O’Flynn B.G., Mittag T. // Curr. Opin. Cell. Biol. 2021. V. 69. P. 70–79. https://doi.org/10.1016/j.ceb.2020.12.012
- Brocca S., Grandori R., Longhi S., Uversky V. // Int. J. Mol. Sci. 2020. V. 21. P. 9045. https://doi.org/10.3390/ijms21239045
- Zhou R., Zeng R., von Brunn A., Lei J. // Mol. Biomed. 2020. V. 1. P. 2. https://doi.org/10.1186/s43556-020-00001-4
- Wang S., Dai T., Qin Z., Pan T., Chu F., Lou L., Zhang L., Yang B., Huang H., Lu H., Zhou F. // Nat. Cell. Biol. 2021. V. 23. P. 718–732. https://doi.org/10.1038/s41556-021-00710-0
- Roden C.A., Dai Y., Giannetti C.A., Seim I., Lee M., Sealfon R., McLaughlin G.A., Boerneke M.A., Iserman C., Wey S.A., Ekena J.L., Troyanskaya O.G., Weeks K.M., You L., Chilkoti A., Gladfelter A.S. // Nucleic Acids Res. 2022. V. 50. P. 8168–8192. https://doi.org/10.1093/nar/gkac596
- Iserman C., Roden C.A., Boerneke M.A., Sealfon R.S.G., McLaughlin G.A., Jungreis I., Fritch E.J., Hou Y.J., Ekena J., Weidmann C.A., Theesfeld C.L., Kellis M., Troyanskaya O.G., Baric R.S., Sheahan T.P., Weeks K.M., Gladfelter A.S. // Mol. Cell. 2020. V. 80. P. 1078–1091.E6. https://doi.org/10.1016/j.molcel.2020.11.041
- Riback J.A., Zhu L., Ferrolino M.C., Tolbert M., Mitrea D.M., Sanders D.W., Wei M.-T., Kriwacki R.W., Brangwynne C.P. // Nature. 2020. V. 581. P. 209–214. https://doi.org/10.1038/s41586-020-2256-2
- Weidmann C.A., Mustoe A.M., Jariwala P.B., Calabrese J.M., Weeks K.M. // Nat. Biotechnol. 2021. V. 39. P. 347–356. https://doi.org/10.1038/s41587-020-0709-7
- Zachrdla M., Savastano A., Ibáñez de Opakua A., Cima-Omori M.S., Zweckstetter M. // Protein Sci. 2022. V. 31. P. e4409. https://doi.org/10.1002/pro.4409
- Banani S.F., Rice A.M., Peeples W.B., Lin Y., Jain S., Parker R., Rosen M.K. // Cell. 2016. V. 166. P. 651–663. https://doi.org/10.1016/j.cell.2016.06.010
- Choi J.-M., Holehouse A.S., Pappu R.V. // Annu. Rev. Biophys. 2020. V. 49. P. 107–133. https://doi.org/10.1146/annurev-biophys-121219-081629
- Lin Y.-H., Brady J.P., Chan H.S., Ghosh K. // J. Chem. Phys. 2020. V. 152. P. 045102. https://doi.org/10.1063/1.5139661
- Supekar N.T., Shajahan A., Gleinich A.S., Rouhani D.S., Heiss C., Chapla D.G., Moremen K.W., Azadi P. // Glycobiology. 2021. V. 31. P. 1080–1092. https://doi.org/10.1093/glycob/cwab044
- Wu J., Zhong Y., Liu X., Lu X., Zeng W., Wu C., Xing F., Cao L., Zheng F., Hou P., Peng H., Li C., Guo D. // J. Mol. Cell. Biol. 2022. V. 14. P. mjac003. https://doi.org/10.1093/jmcb/mjac003
- Wang J., Choi J.-M., Holehouse A.S., Lee H.O., Zhang X., Jahnel M., Maharana S., Lemaitre R., Pozniakovsky A., Drechsel D., Poser I., Pappu R.V., Alberti S., Hyman A.A. // Cell. 2018. V. 174. P. 688–699.E16. https://doi.org/10.1016/j.cell.2018.06.006
- Vernon R.M., Chong P.A., Tsang B., Kim T.H., Bah A., Farber P., Lin H., Forman-Kay J.D. // eLife. 2018. V. 7. P. e31486. https://doi.org/10.7554/eLife.31486
- Caruso I.P., dos Santos Almeida V., do Amaral M.J., de Andrade G.C., de Araújo G.R., de Araújo T.S., de Azevedo J.M., Barbosa G.M., Bartkevihi L., Bezerra P.R., dos Santos Cabral K.M., de Lourenço I.O., Malizia-Motta C.L.F., de Luna Marques A., Mebus-Antunes N.C., Neves-Martins T.C., de Sá J.M., Sanches K., Santana-Silva M.C., Vasconcelos A.A., da Silva Almeida M., de Amorim G.C., Anobom C.D., da Poian A.T., Gomes-Neto F., Pinheiro A.S., Almeida F.C.L. // Int. J. Biol. Macromol. 2022. V. 203. P. 466–480. https://doi.org/10.1016/j.ijbiomac.2022.01.121
- Zhao H., Nguyen A., Wu D., Li Y., Hassan S.A., Chen J., Shroff H., Piszczek G., Schuck P. // PNAS Nexus. 2022. V. 1. P. pgac049. https://doi.org/10.1093/pnasnexus/pgac049
- Bogunia M., Makowski M. // J. Phys. Chem. B. 2020. V. 124. P. 10326–10336. https://doi.org/10.1021/acs.jpcb.0c06399
- Gao T., Gao Y., Liu X., Nie Z., Sun H., Lin K., Peng H., Wang S. // BMC Microbiol. 2021. V. 21. P. 58. https://doi.org/10.1186/s12866-021-02107-3
- Dang M., Li Y., Song J. // Biochem. Biophys. Res. Commun. 2021. V. 541. P. 50–55. https://doi.org/10.1016/j.bbrc.2021.01.018
- Kim D., Lee J.-Y., Yang J.-S., Kim J.W., Kim V.N., Chang H. // Cell. 2020. V. 181. P. 914–921.E10. https://doi.org/10.1016/j.cell.2020.04.011
- Malone B., Urakova N., Snijder E.J., Campbell E.A. // Nat. Rev. Mol. Cell Biol. 2022. V. 23. P. 21–39. https://doi.org/10.1038/s41580-021-00432-z
- Ziv O., Price J., Shalamova L., Kamenova T., Goodfellow I., Weber F., Miska E.A. // Mol. Cell. 2022. V. 80. P. 1067–1077.E5. https://doi.org/10.1016/j.molcel.2020.11.004
- Klein S., Cortese M., Winter S.L., Wachsmuth-Melm M., Neufeldt C.J., Cerikan B., Stanifer M.L., Boulant S., Bartenschlager R., Chlanda P. // Nat. Commun. 2020. V. 11. P. 5885. https://doi.org/10.1038/s41467-020-19619-7
- Zhang Z., Nomura N., Muramoto Y., Ekimoto T., Uemura T., Liu K., Yui M., Kono N., Aoki J., Ikeguchi M., Noda T., Iwata S., Ohto U., Shimizu T. // Nat. Commun. 2022. V. 13. P. 4399. https://doi.org/10.1038/s41467-022-32019-3
- Perdikari T.M., Murthy A.C., Ryan V.H., Watters S., Naik M.T., Fawzi N.L. // EMBO J. 2020. V. 39. P. e106478. https://doi.org/10.15252/embj.2020106478
- Luo L., Li Z., Zhao T., Ju X., Ma P., Jin B., Zhou Y., He S., Huang J., Xu X., Zou Y., Li P., Liang A., Liu J., Chi T., Huang X., Ding Q., Jin Z., Huang C., Zhang Y. // Sci. Bull. (Beijing). 2021. V. 66. P. 1194–1204. https://doi.org/10.1016/j.scib.2021.01.013
- Wang W., Chen J., Yu X., Lan H.Y. // Int. J. Biol. Sci. 2022. V. 18. P. 4704–4713. https://doi.org/10.7150/ijbs.72663
- Oh S.J., Shin O.S. // Cells. 2021. V. 10. P 530. https://doi.org/10.3390/cells10030530
- Wu Y., Ma L., Cai S., Zhuang Z., Zhao Z., Jin S., Xie W., Zhou L., Zhang L., Zhao J., Cui J. // Signal Transduct. Target. Ther. 2021. V. 6. P. 167. https://doi.org/10.1038/s41392-021-00575-7
- Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. // Nat. Rev. Immunol. 2020. V. 20. P. 363–374. https://doi.org/10.1038/s41577-020-0311-8
- Dang M., Song J. // Protein Sci. 2022. V. 31. P. 345–356. https://doi.org/10.1002/pro.4221
- Patel A., Malinovska L., Saha S., Wang J., Alberti S., Krishnan Y., Hyman A.A. // Science. 2017. V. 356. P. 753–756. https://doi.org/10.1126/science.aaf6846
- Song J. // Protein Sci. 2021. V. 30. P. 1277–1293. https://doi.org/10.1002/pro.4079
- Kang J., Lim L., Lu Y., Song J. // PLoS Biol. 2019. V. 17. P. 1–33. https://doi.org/10.1371/journal.pbio.3000327
- Dinesh D.C., Chalupska D., Silhan J., Koutna E., Nencka R., Veverka V., Boura E. // PLoS Pathog. 2020. V. 16. P. 1–16. https://doi.org/10.1371/journal.ppat.1009100
- Zhao D., Xu W., Zhang X., Wang X., Ge Y., Yuan E., Xiong Y., Wu S., Li S., Wu N., Tian T., Feng X., Shu H., Lang P., Li J., Zhu F., Shen X., Li H., Li P., Zeng J. // Protein Cell. 2021. V. 12. P. 734–740. https://doi.org/10.1007/s13238-021-00832-z
- Zhao M., Yu Y., Sun L.-M., Xing J.-Q., Li T., Zhu Y., Wang M., Yu Y., Xue W., Xia T., Cai H., Han Q.-Y., Yin X., Li W.-H., Li A.-L., Cui J., Yuan Z., Zhang R., Zhou T., Zhang X.-M., Li T. // Nat. Commun. 2021. V. 12. P. 2114. https://doi.org/10.1038/s41467-021-22297-8
- Gorąca A., Huk-Kolega H., Piechota A., Kleniewska P., Ciejka E., Skibska B. // Pharmacol. Rep. 2011. V. 63. P. 849–858. https://doi.org/10.1016/S1734-1140(11)70600-4
- Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O’Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., Tummino T.A., Hüttenhain R., Kaake R.M., Richards A.L., Tutuncuoglu B., Foussard H., Batra J., Haas K., Modak M., Kim M., Haas P., Polacco B.J., Braberg H., Fabius J.M., Eckhardt M., Soucheray M., Bennett M.J., Cakir M., McGregor M.J., Li Q., Meyer B., Roesch F., Vallet T., Mac Kain A., Miorin L., Moreno E., Naing Z.Z.C., Zhou Y., Peng S., Shi Y., Zhang Z., Shen W., Kirby I.T., Melnyk J.E., Chorba J.S., Lou K., Dai S.A., Barrio-Hernandez I., Memon D., Hernandez-Armenta C., Lyu J., Mathy C.J.P., Perica T., Pilla K.B., Ganesan S.J., Saltzberg D.J., Rakesh R., Liu X., Rosenthal S.B., Calviello L., Venkataramanan S., Liboy-Lugo J., Lin Y., Huang X.P., Liu Y., Wankowicz S.A., Bohn M., Safari M., Ugur F.S., Koh C., Savar N.S., Tran Q.D., Shengjuler D., Fletcher S.J., O’Neal M.C., Cai Y., Chang J.C.J., Broadhurst D.J., Klippsten S., Sharp P.P., Wenzell N.A., Kuzuoglu-Ozturk D., Wang H.Y., Trenker R., Young J.M., Cavero D.A., Hiatt J., Roth T.L., Rathore U., Subramanian A., Noack J., Hubert M., Stroud R.M., Frankel A.D., Rosenberg O.S., Verba K.A., Agard D.A., Ott M., Emerman M., Jura N., von Zastrow M., Verdin E., Ashworth A., Schwartz O., d’Enfert C., Mukherjee S., Jacobson M., Malik H.S., Fujimori D.G., Ideker T., Craik C.S., Floor S.N., Fraser J.S., Gross J.D., Sali A., Roth B.L., Ruggero D., Taunton J., Kortemme T., Beltrao P., Vignuzzi M., García-Sastre A., Shokat K.M., Shoichet B.K., Krogan N.J. // Nature. 2020. V. 583. P. 459–468. https://doi.org/10.1038/s41586-020-2286-9
- Wheeler R.J., Lee H.O., Poser I., Pal A., Doeleman T., Kishigami S., Kour S., Anderson E.N., Marrone L., Murthy A.C., Jahnel M., Zhang X., Boczek E., Fritsch A., Fawzi N.L., Sterneckert J., Pandey U., David D.C., Davis B.G., Baldwin A.J., Hermann A., Bickle M., Alberti S., Hyman A.A. // bioRxiv. 2019. https://doi.org/10.1101/721001
- Itoh Y., Iida S., Tamura S., Nagashima R., Shiraki K., Goto T., Hibino K., Ide S., Maeshima K. // Life Sci. Alliance. 2021. V. 4. P. e202001005. https://doi.org/10.26508/lsa.202001005
- Blount K.F., Zhao F., Hermann T., Tor Y. // J. Am. Chem. Soc. 2005. V. 127. P. 9818–9829. https://doi.org/10.1021/ja050918w
- Svetlova J., Knizhnik E., Manuvera V., Severov V., Shirokov D., Grafskaia E., Bobrovsky P., Matyugina E., Khandazhinskaya A., Kozlovskaya L., Miropolskaya N., Aralov A., Khodarovich Y., Tsvetkov V., Kochetkov S., Lazarev V., Varizhuk A. // Int. J. Mol. Sci. 2022. V. 23. P. 15281. https://doi.org/10.3390/ijms232315281
Supplementary files
