The Influence of the Surface Density of Thermally Expanded Graphite Sheets on the Acoustic Wave Transmission

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper presents the results of experimental and theoretical studies of the influence of the surface density of a thin porous sheet of thermally expanded graphite on the transmission coefficient of the acoustic wave. The possibility of using the theory of thin films to describe the processes of transmission of acoustic waves through porous sheet in the field of low frequencies and small thicknesses has been proven. The influence of the operating frequency on the sensitivity of the transmission coefficient to the surface density of the sheet was assessed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Muravyeva

Kalashnikov Izhevsk State Technical University; Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: pmkk@istu.ru
Ресей, Izhevsk; Izhevsk

L. Denisov

Kalashnikov Izhevsk State Technical University

Email: pmkk@istu.ru
Ресей, Izhevsk

O. Bogdan

Kalashnikov Izhevsk State Technical University

Email: pmkk@istu.ru
Ресей, Izhevsk

A. Blinova

Kalashnikov Izhevsk State Technical University

Email: pmkk@istu.ru
Ресей, Izhevsk

Әдебиет тізімі

  1. Biot M.A. Acoustics, elasiticity, and thermodynamics of porous media: twenty-one papers. New York: Acoustical Society of America, 1992. 265 p.
  2. Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N. Velocity and attenuation of linear waves in porous media saturated with gas and its hydrate // Journal of Applied Mechanics and Technical Physics. 2022. V. 63. No. 4 (374). P. 56—63. doi: 10.1134/s002189442204006x. EDN PQARJW.
  3. Yang Q., Malcolm A., Rusmanugroho H., Mao W. Analysis of radiation patterns for optimized full waveform inversion in fluid-saturated porous media // Geophysical Journal International. 2019. V. 216. № 3. P. 1919—1937. doi: 10.1093/gji/ggy525
  4. Sivanantham M., Thyla P., Loganathan P., Sathish S. Measuring Methods of Acoustic Properties and Influence of Physical Parameters on Natural Fibers: A Review // Journal of Natural Fibers. 2019. V. 17. № 12. P. 1—20. doi: 10.1080/15440478.2019.1598913
  5. Zhao H., Wang Y., Yu D., Yang H., Zhong J., Wu F., Wen J. A double porosity material for low frequency sound absorption // Composite Structures. 2020. V. 239. 111978 p. doi: 10.1016/j.compstruct.2020.111978
  6. Oh J.-H., Kim J.-S, Nguyen V.-H., Oh I.-K. Auxetic graphene oxide-porous foam for acoustic wave and shock energy dissipation // Composites Part B: Engineering. 2020. V. 186. 107817 p. doi: 10.1016/j.compositesb.2020.107817
  7. Gubaidullin D.A., Fedorov Y.V. Peculiarities of Acoustic Wave Reflection from a Boundary or Layer of a Two-Phase Medium // Acoustical Physics. 2018. V. 64. No. 2. P. 164—174. doi: 10.1134/S1063771018020057. EDN XXNDJB.
  8. Dmitriev V.L., Ponomareva E.A. Rasprostranenie akusticheskikh voln v sloistykh poristykh sredakh / Trudy Instituta mekhaniki UNTs RAN. Ufa: Gilem, 2007. P. 169—175.
  9. Jimenez N., Umnova O., Groby J.-P. Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media: From Fundamentals to Industrial Applications. Topics in Applied Physics. Springer, 2021. 444 p.
  10. Bogdan O.P., Zlobin D.V., Murav’eva O.V., Molin S.M., Platunov A.V. Evaluation of nonuniformity of elastic properties of sheets made from closed-сell polyolefin foams by acoustic method // Devices and Methods of Measurements. 2021. Т. 12. № 1. С. 58—66. doi: 10.21122/2220-9506-2021-12-1-58-66. EDN AKZRSP.
  11. Bogdan O.P., Murav’eva O.V., Platunov A.V., Risev D.S. Investigation of the characteristics of sheets of polyurethane foam by acoustic methods // Vestnik IzhGTU imeni M.T. Kalashnikova. 2020. V. 23. No. 2. P. 61—68.
  12. Fedotovskii V.C. A Porous Medium As an Acoustic Metamaterial with Negative Inertial and Elastic Properties // Acoustical Physics. 2018. V. 64. No. 5. P. 548—554. doi: 10.1134/S1063771018050020. EDN WTURTZ.
  13. Horoshenkov K., Hurrell A., Groby J.-P. Erratum: A three-parameter analytical model for the acoustical properties of porous media // J. Acoust. Soc. Am. 2019. V. 145 (4). P. 2512—2517. doi: 10.1121/10.0000560
  14. Zhang W., Mehrabian A. Связь поромеханики и адсорбции в мультипористых твердых телах // Физ. мезомех. 2023. Т. 26. № 2. С. 43—56. doi: 10.55652/1683-805X_2023_26_2_43. EDN LYEEKU.
  15. Fomenko S.I., Dzhana R.B., Romashin A.K. Modelirovanie rasprostraneniya uprugikh voln v dvukhfaznoi poristo-uprugoi srede i opredelenie effektivnykh modulei s pomoshch’yu poverkhnostnykh voln / Matematicheskoe modelirovanie v estestvennykh naukakh. Materialy XXXI Vserossiiskoi shkoly-konferentsii. Perm’, 05–08 oktyabrya 2022. Perm’: Permskii natsional’nyi issledovatel’skii politekhnicheskii universitet, 2022. V. 1. P. 308—310. EDN LYMNAZ.
  16. Kidner M., Hansen C. A comparison and review of theories of the acoustics of porous materials // International Journal of Acoustics and Vibrations. 2008. V. 13. P. 1—27.
  17. Lenkov S.V. Acoustic surface waves in porous-elastic biphasic media // Chemical physics and mesoscopy. 2023. V. 25. No. 3. P. 375—384. doi: 10.15350/17270529.2023.3.33. EDN PBCENE.
  18. Il’yasov K.K., Kuznetsov S.V., Sekerzh-Zen’kovich S.Y., Kravtsov A.V. Features of acoustic waves in media with large porosity values in the framework of the Biot theory // Acoustical Physics. 2017. V. 63. No. 6. P. 711—715. doi: 10.1134/S1063771017060045. EDN XNNLKD
  19. Zhang L., Ba J., Carcione J.M. Wave propagation in infinitupleporosity media // J. Geophy Res: Solid Earth. 2021. V. 126. № 4. doi: 10.1029/2020JB021266
  20. Sitdikova L.F., Gimaltdinov I.K. The problem of the propagation of acoustic waves in a porous environment saturated with bubble liquid // Bulletin of the south ural state university. Series: mathematics. Mechanics. Physics. 2021. V. 13. No. 1. P. 59—66. doi: 10.14529/mmph210107. EDN QVHMWD.
  21. Li J.X., Rezaee R., Muller T.M. Wettability effect on wave propagation in saturated porous medium // J. Acoust. Soc. Am. 2020. V. 147. P. 911—920. doi: 10.1121/10.0000616
  22. Venegas R., Zielinski T. G., Nunez G., Becot F.-X. Acoustics of porous composites // Composites Part B Engineering. 2021. V. 220. 109006 p. doi: 10.1016/j.compositesb.2021.109006
  23. Tao L. Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method // Chaos, Solitons & Fractals. 2022. V. 158. 112007 p. doi: 10.1016/j.chaos.2022.112007
  24. Goyal S., Bhagwan J., Tomar S.K. Elastic waves at the plane interface of swelling porous half-space and viscoelastic half-space with voids // Int. J. Mech. Sci. 2020. V. 188. 105942 p. doi: 10.1016/j.ijmecsci.2020.105942
  25. Gubaidullin A.A., Boldyreva O.Y., Dudko D.N. Interaction of acoustic waves with porous layer // Thermophysics and Aeromechanics. 2009. V. 16. No. 3. P. 429—443. doi: 10.1134/S0869864309030123. EDN MWUHRV.
  26. Golub M.V., Doroshenko O.V., Okoneshnikova E.A., Fomenko S.I. Modelirovanie rasprostraneniya uprugikh voln v sloistom periodicheskom kompozite s dvazhdy periodicheskim massivom interfeisnykh otsloenii proizvol’noi formy // Matematicheskoe modelirovanie v estestvennykh naukakh. 2022. V. 1. P. 71—74. EDN KYBHPB.
  27. Isaev O.Yu., Smirnov D.V., Lepikhin V.P., Belova M.Yu., Kolesova S.M. Technology and the hardware solution of a process of manufacture of thickening materials from thermal expanded graphite // Composite materials constructions. 2006. No. 4. P. 76—79. EDN JZGEQJ.
  28. Kotov S.A., Muzafarova S.-V.R., Livintsova M.G. Study of compaction processes of thermally expanded graphite powders during rolling // Blanking production in mechanical engineering. 2019. V. 17. No. 8. P. 366—370. EDN XHGSSI.
  29. Bogdan O.P., Murav′eva O.V., Blinova A.V., Zlobin D.V. Investigation of Density of Samples Made of Thermally Expanded Graphite by Acoustic Amplitude-Shadow Method // Russian Journal of Nondestructive Testing. 2023. V. 59. No. 8. P. 857—867. doi: 10.1134/s106183092370050x. EDN JYGZTH.
  30. Sekoyan S.S., Shlegel’ V.R., Batsanov S.S. Effect of the porosity and particle size of materials on sound-wave velocity // Journal of Applied Mechanics and Technical Physics. 2009. V. 50. No. 4. P. 646—650. doi: 10.1007/s10808-009-0086-y. EDN LLTOMR.
  31. Krautsou A., Shornikova O.N., Avdeev V.V. Using a Neural Network to Study the Effect of the Means of Synthesizing Exfoliated Graphite on Its Macropore Structure // Russian Journal of Physical Chemistry A. 2023. V. 97. No. 6. P. 1168—1173. doi: 10.1134/s0036024423060110. EDN VCTGRE.
  32. Brekhovskikh L.M. Volny v sloistykh sredakh. 2-e izd. dopolnennoe i pererabotannoe. M.: Nauka, 1973. P. 340.
  33. Bergman L. Ul’trazvuk i ego primenenie v nauke i tekhnike. Per. s nem. / Pod red. V. S. Grigor’eva i L. D. Rozenberga. Moskva: Izd-vo inostr. lit., 1956. P. 726.
  34. Kuznetsov S.V, Mondrus V.L. Love waves in stratified monoclinic media // Quarterly of Applied Mathematics. 2004. V. 62. No. 4. P. 749—766. doi: 10.1090/qam/2104272. EDN LIVDIN.
  35. Kuznetsov S.V. Guided waves in stratified media with equal acoustic impedances // Mechanics of Materials. 2022. V. 170. P. 104338. doi: 10.1016/j.mechmat.2022.104338. EDN MCHXLS.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme for determining the transparency coefficient along the normal (a) and at an angle to the surface (b); photo of the installation (c)

Жүктеу (499KB)
3. Fig. 2. Experimental dependences of the transparency coefficient on the sheet density at its different thicknesses

Жүктеу (171KB)
4. Fig. 3. Experimental dependence of the transparency coefficient on the surface density (a); on the generalised parameter (b)

Жүктеу (138KB)
5. Fig. 4. Experimental dependences of the transparency coefficient on the input angle for samples No. 1 and No. 3

Жүктеу (80KB)
6. Fig. 5. Formulation of the problem of a plane wave travelling through a thin layer

Жүктеу (56KB)
7. Fig. 6. Dependence of amplitudes (a, b) and phases (c, d) of transparency coefficients D and reflection coefficients R on fh for sample No. 1 at velocity C2 = 330 m/s (a, c) and velocity C2 = 1470 m/s (b, d)

Жүктеу (412KB)
8. Fig. 7. Dependence of the transparency coefficient on frequency when the Cl velocity is changed (ρ = 643 kg/m3, h = 1.5 mm) (a); when the sample thickness is changed (Cl = 500 m/s, ρ = 1147 kg/m3) (b); when the sample density is changed (Cl = 500 m/s, h = 1.5 mm) (c)

Жүктеу (206KB)
9. Fig. 8. Theoretical dependence of the transparency coefficient on the surface density ρh (a); on (ρh)-1 (b)

Жүктеу (157KB)
10. Fig. 9. Theoretical dependence of the transparency coefficient on the angle of incidence for samples No. 1 and No. 3

Жүктеу (108KB)
11. Fig. 10. Theoretical dependence of the sensitivity of the SD of the transparency coefficient on the surface density ρh in different frequency ranges

Жүктеу (143KB)
12. Fig. 11. Theoretical dependence of the sensitivity of the transparency coefficient to surface density (ρh)-1 on frequency

Жүктеу (70KB)
13. Fig. 12. Dependences of the change in the amplitude ΔU of the passed signal obtained during calibration (formula (12)) and the change in the transparency coefficient ΔD obtained during modelling on the change in the density Δρ

Жүктеу (146KB)

© Russian Academy of Sciences, 2024