Infrared Diagnostics of Turbulence in the Front of Wildland Fire and the Formation of Induced Atmospheric Turbulence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An infrared diagnostic of the scale of turbulence in the front of a natural fire is presented, as well as a comparison with the scale of turbulence in the air near the combustion source for a model grassland and crown fire. An analysis of the flame of a grassland fire reveals smaller turbulence scales than the flame of a crown fire. A fire-induced atmospheric turbulence at a height of 10 m is observed with the corresponding frequency of air temperature pulsation (0.1-6 Hz for a steppe fire and 0.1-3 Hz for a crown fire). The values of the structural functions of refractive index and temperature fluctuations are significantly higher than the background values and can be used for remote fire detection.

Full Text

Restricted Access

About the authors

A. V. Lutsenko

Tomsk State National Research University

Author for correspondence.
Email: anastas_mex_mat434@mail.ru
Russian Federation, 36, Lenin Ave., Tomsk, 634050

E. L. Loboda

Tomsk State National Research University

Email: loboda@mail.tsu.ru
Russian Federation, 36, Lenin Ave., Tomsk, 634050

D. P. Kasymov

Tomsk State National Research University

Email: denkasymov@gmail.com
Russian Federation, 36, Lenin Ave., Tomsk, 634050

M. V. Agafontsev

Tomsk State National Research University

Email: kim75mva@gmail.com
Russian Federation, 36, Lenin Ave., Tomsk, 634050

References

  1. Melekhov I.S. Forestry: Book for universities. M.: MGUL, 2003. 320 p.
  2. Grishin A.M. On the influence of negative ecological consequences of forest fires // Ecological Systems and Instruments. 2003. No. 4. P. 40—43.
  3. Brodsky A.K. Introduction to Biodiversity Problems: Illustrated Handbook. SPb.: SPbU Publishing, 2002. 144 p.
  4. Kasischke E.S., Christensen N.L., Stocks B.J. Fire, Global Warming, and the Carbon Balance of Boreal Forests // Ecological Applications. 1995. V. 5 (2). P. 437—451. https://doi.org/10.2307/1942034
  5. MacCracken M.C., Cess R.D., Potter G.R. Climatic effects of anthropogenic arctic aerosols and illustration of climatic feedback mechanisms with 2D climatic models // J. Geophys. Res. 1986. V. 91 (D10). P. 14445—14450. doi: 10.1029/JD091iD13p14445
  6. Grinko O.I., Grigorieva O.I., Grigoryev I.В. Impact of forest fires on forest ecosystem // Vestnik AGATU. 2023. V. 3 (11). P. 45—72.
  7. Voulgarakis A., Field R.D. Fire Influences on Atmospheric Composition, Air Quality and Climate // Curr. Pollution Rep. 2015. V. 1. P. 70—81. doi: 10.1007/s40726-015-0007-z
  8. Vinogradova A.A., Smirnov N.S., Korotkov V.N., Romanovskaya A.A. Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic // Atmos. Ocean. Opt. 2015. V. 28. P. 512—520.
  9. Sitnov S.A., Mokhov I.I., Dzhola A.V. The confluence of Siberian fires on the content of carbon monoxide in the atmosphere over the European part of Russia in the summer of 2016 // Atmos. Ocean. Opt. 2017. V. 30. P. 146—152.
  10. Smirnov A. P. Forest fires - 2010: causes and consequences // Supplement to the journal Life Safety. 2013. No. 11. P. 13—16.
  11. Zaitsev A.M., Gubsky S.V. On the issue of forest fires due to spontaneous combustion of forest litter // Bulletin of the Voronezh Institute of the State Fire Service of the Ministry of Emergency Situations of Russia. 2016. V. 4 (21). P. 22—29.
  12. Loboda E.L., Matvienko O.V., Vavilov V.P., Reyno V.V. Infrared thermographic evaluation of flame turbulence scale // Infrared Phys. Technol. 2015. V. 72. P. 1—7.
  13. Loboda E.L., Lutsenko A.V., Agafontsev M.V. Investigation of turbulence in the flame of a model fire and the appearance of induced atmospheric turbulence // Izvestiya vuzov. Fizika. 66 (4). P. 48—56. doi: 10.17223/00213411/66/4/5
  14. Obukhov A.M. Turbulence and dynamics of the atmosphere. L.: Gidrometeoizdat, 1988. 414 p.
  15. Monin A.S., Yaglom A.M. Statistical hydromechanics. Part 2. M.: Nauka, 1967. 720 p.
  16. Vavilov V.P. Infrared thermography and thermal control. М.: ID Spektr, 2009. 544 p.
  17. Vesala G.T., Ghali V.S., Naga prasanthi Y., Suresh B. Parametric study of anomaly detection models for defect detection in infrared thermography // Defectoskopiya. 2023. No. 12. P. 12—25. doi: 10.31857/S0130308223120023
  18. Yang H., Yan Y., Liu X., Wang H., Hou Y., Vavilov V.P. Evaluating efficiency of foreign object detection technology based on the use of passive infrared thermography // Defectoskopiya. 2024. No. 8. P. 32—41. doi: 10.31857/S0130308224080035
  19. Loboda E.L., Reino V.V., Agafontsev M.V. Application of thermography in the study of combustion processes. Tomsk: TSU Publishing, 2016. 80 p.
  20. Kasymov D.P., Agafontsev M.V., Perminov V.A. Infrared Thermographic Diagnostics of Wood Fire Resistance under Combined Thermal Effect Conditions from a Ground Fire Front and Firebrands // Defectoskopiya. 2024. No. 10. P. 51—58. doi: 10.31857/S0130308224100058
  21. Loboda E.L., Kasymov D. P., Agafontsev M.V., Reyno V.V., Lutsenko A.V., Staroseltseva A.A., Perminov V.V., Martynov P.S., Loboda Ya. A., Orlov K.E. Crown fire modeling and its effect on atmospheric characteristics // Atmosphere. 2022. V. 13. No. 12. P. 1—9. URL: https://www.mdpi.com/2073-4433/13/12/1982
  22. Loboda E.L., Kasymov D.P., Agafontsev M.V., Reino V.V., Gordeev E.V., Tarakanova V.A., Martynov P.S., Orlov K.E., Savin K.V., Dutov A.I., Loboda Y.A. Influence of small natural fires on the characteristics of the atmosphere near the burning center // Atmospheric and Ocean Optics. 2020. V. 33. No. 10. P. 818—823. doi: 10.15372/AOO20201011
  23. Instruction on the use of basic software “METEO 3.0” AMYA2.702.089 I1. Institute for monitoring of climatic and ecological systems SB RAS Sibanalitpribor LLC.
  24. Loboda E.L., Lutsenko A.V., Kasymov D.P., Agafontsev M.V., Kolesnikov I.A. Influence of a model fire on the characteristics of turbulence in the atmosphere // Atmospheric and Ocean Optics. 2023. V. 36. No. 10. P. 854—860. doi: 10.15372/AOO20231010
  25. Loboda E., Kasymov D., Agafontsev M., Reyno V., Gordeev Y., Tarakanova V., Martynov P., Loboda Y., Orlov K., Savin K., Dutov A. Effect of Small-Scale Wildfires on the Air Parameters near the Burning Centers // Atmosphere. 2021. V. 12. No. 1. P. 75 (1—15). doi: 10.3390/atmos12010075

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the experimental plot and location of measuring equipment (steppe fire): 1 - experimental plot 15×3 m; 2 - ignition strip; 3 - weather station AMK-03 on a mast 10 m; 4 - infrared camera JADE J530SB; 5 - video camera.

Download (74KB)
3. Fig. 2. Scheme of the experimental plot and location of measuring equipment (overhead fire): 1 - experimental plot 10 × 4 m; 2 - ignition lane; 3 - ‘acceleration plot’; 4 - area of undergrowth and bushes; 5 - model forest canopy (pine trees 2-3 m high); 6 - model forest canopy (pine trees 3-4 m high); 7 - rack with thermocouples; 8 - recording and recording equipment; 9 - IR camera JADE J530SB; 10 - video camera; 11 - weather station AMK-03 on a mast 10 m.

Download (95KB)
4. Fig. 3. Thermogram of the burning front of a model steppe fire and temperature change in the flame.

Download (462KB)
5. Fig. 4. Temperature pulsation spectrum in the flame at L / 2 height (a) and at L height (b) for a steppe fire.

Download (133KB)
6. Fig. 5. Air temperature pulsation spectra at 3 and 10 m height: before the experiment at 3 m height for steppe (a) and upland (b) fires; during the experiment at 3 m height (c - steppe, d - upland) and 10 m height (e - steppe, f - upland).

Download (433KB)
7. Fig. 6. Change of local characteristics of the atmosphere in the vicinity of the burning centre for a steppe fire: a - change of the structural function of the refractive index C2n (optical); b - change of the structural constant of temperature fluctuation C2T.

Download (153KB)
8. Fig. 7. Change of local characteristics of the atmosphere in the vicinity of the combustion centre for the upper fire: a - change of the structural function of the refractive index C2n (optical); b - change of the structural constant of temperature fluctuation C2T.

Download (179KB)

Copyright (c) 2025 Russian Academy of Sciences