Evaluation of the Non-Uniformity of Acoustic and Elastic Properties of Compression Coil Springs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper is devoted to the investigation of the acoustic and elastic properties of automotive and railway springs manufactured by cold coiling and high-temperature machining, respectively. The mirror-shadow method of multiple reflections based on measuring the velocities of longitudinal and transverse waves propagating along the rod diameter of the spring is used to evaluate the non-uniformity of the acoustic properties. Specially designed pass-through electromagnetic-acoustic transducers of transverse waves of axial polarisation and transducers of longitudinal waves on the basis of flexible piezo film of polyvinylidene fluoride provide multiple reflection of volume waves along the cross-section of the coiled coil of the spring. The elasticity, shear moduli and Poisson’s ratio are calculated from the results of wave velocity measurements. It was established that the non-uniformity of acoustic and elastic properties along the length of the bar differs for automotive and railway springs. It was found that there are differences in the non-uniformity of acoustic and elastic properties along the length of the coiled bar for automotive and railway springs.

Full Text

Restricted Access

About the authors

O. V. Muraveva

Kalashnikov Izhevsk State Technical University; Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: pmkk@istu.ru
Russian Federation, 7, Studencheskaya St., Izhevsk, 426069; 34, Tatiana Baramzina St., Izhevsk, 426067

V. V. Murav’ev

Kalashnikov Izhevsk State Technical University; Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: vmuraviev@mail.ru
Russian Federation, 7, Studencheskaya St., Izhevsk, 426069; 34, Tatiana Baramzina St., Izhevsk, 426067

P. A. Shikharev

Kalashnikov Izhevsk State Technical University

Email: pmkk@istu.ru
Russian Federation, 7, Studencheskaya St., Izhevsk, 426069

K. Yu. Belosludtsev

Kalashnikov Izhevsk State Technical University

Email: pmkk@istu.ru
Russian Federation, 7, Studencheskaya St., Izhevsk, 426069

References

  1. Gupalov B.A. Improving the quality of manufacturing of locomotive body frames // Vestnik IzhGTU imeni M.T. Kalashnikova. 2022. V. 25. N. 1. Р. 62—76. doi: 10.22213/2413-1172-2022-1-62-76. EDN: PNEVDV.
  2. Dementyev V.B., Lomayeva T.V., Solovyev S.D. Vysokotemperaturnaya termomekhanicheskaya obrabotka v tekhnologii proizvodstva vintovykh pruzhin. Izhevsk: Izd-vo Izhevskiy gosudarstvennyy tekhnicheskiy universitet imeni M. T. Kalashnikova. 2022. 208 p. ISBN 978-5-7526-0969-5. EDN PACJAH.
  3. Grigor’ev V. M., Makienko V. M., Sokolov P.V. Analysis of the springs destruction of the passenger carriage // Pacific Rim countries transportation system. 2015. No. 1 (2—3). Р. 94—97. EDN: UDYKRZ.
  4. Bergh F., Silva G.C., Silva C., Paiva P. Analysis of an automotive coil spring fracture, Engineering Failure Analysis // Engineering Failure Analysis. 2021. V. 129. P. 105679. doi: 10.1016/j.engfailanal.2021.105679
  5. Kumbhalkar M.A., Bhope D.V., Chaoji P.P. Investigation for Failure Response of Suspension Spring of Railway Vehicle: A Categorical Literature Review // Journal of Failure Analysis and Prevention. 2020. V. 20. P. 1130—1142. doi: 10.1007/s11668-020-00918-6
  6. Husaini Azhar, Teuku Е.P. Stress Analysis on an Automotive Coil Spring Due to Speed Effect / Proceedings of the 3rd International Conference on Experimental and Computational Mechanics in Engineering. ICECME 2021. Lecture Ntes in Mechanical Engineering. Springer, Singapore. 2023. Р. 148—153. doi: 10.1007/978-981-19-3629-6-16
  7. Shevchenko D.V., Rudakova E.A., Orlova A.M., Gusev A.V., Shalpegin G.S. Approaches to assessing the stress-strain state of freight car spring suspension coils // Proceedings of Petersburg Transport University. 2020. V. 17. No. 2. Р. 221—232. doi: 10.20295/1815-588X-2020-2-221-232. EDN: LKBTSV.
  8. Sun H., Danilov V.L. Analysis of residual stresses in helical cylindrical springs at high temperature // Science and Education of the Bauman MSTU. 2015. N. 6. Р. 384—396. doi: 10.7463/0615.0778617. EDN: UBZHVZ.
  9. Kobelev V. Elastic-plastic work-hardening deformation under combined bending and torsion and residual stresses in helical springs // International Journal of Material Forming. 2010. V. 3. Suppl. 1. P. 869—881. doi: 10.1007/s12289-010-0908-8
  10. Chin C.H., Abdullah S., Singh S.S.K. Probabilistic-based fatigue reliability assessment of carbon steel coil spring from random strain loading excitation // J. Mech. Sci. TechNl. 2022. V. 36. P. 109—118. doi: 10.1007/s12206-021-1209-5
  11. Kong Y.S., Shahrum A., Dieter S., Mohd Z.O., Sallehuddin M.H. Evaluation of Energy-Based Model Generated Strain Signals for Carbon Steel Spring Fatigue Life Assessment // Metals. 2019. V. 9. No. 2. Р. 213. doi: 10.3390/met9020213
  12. Hattori C.S., Couto A.A., Vatavuk J., de Lima N.B., Reis D.A.P. Evaluation of Fatigue Behavior of SAE 9254 Steel Suspension Springs Manufactured by Two Different Processes: Hot and Cold Winding // Experimental and Numerical Investigation of Advanced Materials and Structures. 2013. V. 41. Р. 91—105. doi: 10.1007/978-3-319-00506-5_5
  13. Ostash О.P., Chepil’ R.V., Markashova L.І. Influence of the Modes of Heat Treatment on the Durability of Springs Made of 65G Steel // Materials Science. 2018. V. 53. Р. 684—690. doi: 10.1007/s11003-018-0124-0
  14. Mocilnik V., Gubeljak N., Predan J., Flasker J. The influence of constant axial compression pre-stress on the fatigue failure of torsion loaded tube springs // Engineering Fracture Mechanics. 2010. V. 77. P. 3132—3142. doi: 10.1016/j.engfracmech.2010.07.014
  15. Kozlov M.V., Petrov A.A., Levchuk T.V. Study of metrological characteristics of the vortex method of nondestrousing control of the car park// Innovacii i investicii. 2021. No. 6. Р. 143—146. EDN: ZNGJEF.
  16. Fukuoka K., Hasegawa R. Flaw detection for microcrack in spring steel and estimation of crack shape with eddy current testing // International Journal of Applied Electromagnetics and Mechanics. 2018. V. 59. Р. 1—8. doi: 10.3233/JAE-1711
  17. Aravanis T.C., Sakellariou J., Fassois S. A stochastic Functional Model based method for random vibration based robust fault detection under variable Nn–measurable operating conditions with application to railway vehicle suspensions // Journal of Sound and Vibration. 2019. V. 466. Р. 115006. doi: 10.1016/j.jsv.2019.115006
  18. Li C., Luo S., Cole C., Spiryagin M. Bolster spring fault detection strategy for heavy haul wagons // Vehicle System Dynamics. 2018. V. 56. Р. 1—18. doi: 10.1080/00423114.2017.1423090
  19. Bespalov D.A., Silaev M.Yu., Voroshilin V.V., Remshev E.Yu. Estimation of parameters of quality of spiral springs made of steel 65c2ba acoustic methods // Metalloobrabotka. 2014. No. 3 (81). Р. 51—54. EDN: SLJFER.
  20. Murav'ev V.V., Murav'eva O.V., Strizhak V.A., Pryakhin A.V., Fokeeva E.N. An analysis of the comparative reliability of acoustic testing methods of bar stock from spring steels // Defectoskopiya. 2014. No. 8. P. 3—12. EDN: SYRLJF.
  21. Strizhak V.A., Khasanov R.R., Khomutov A.S., Torkhov K.A., Pushin P.N. Waveguide Acoustic Control of Pipes — Billets of Deep Rod Pumps // Vestnik IzhGTU imeni M.T. Kalashnikova. 2024. V. 27. No. 3. Р. 86—100. doi: 10.22213/2413-1172-2024-3-86-100. EDN: PKTDNX.
  22. Murav'ev V.V., Murav'eva O.V., Vladykin A.L. Acoustic and electromagnetic properties of maraging iron–chromium–nickel alloy with addition of copper in mechanical tension // Defectoskopiya. 2023. No. 5. P. 12—20. EDN: YZXLMH. doi: 10.31857/S0130308223050020
  23. Murav'ev V.V., Murav'eva O.V., Vagapov T.R., Makarova V.E., Stepanova E.A. Acoustic and electromagnetic properties of civilian rifle barrel blanks // Intellektual'nye sistemy v proizvodstve. 2023. V. 21. No. 1. P. 59—70. doi: 10.22213/2410-9304-2023-1-59-70. EDN: KBBVGW.
  24. Muravieva O.V., Muraviev V.V., Volkova L.V., Vladykin A.L., Belosludtsev K.Yu. Acoustic properties of 15-5 PH maraging steel after energy deposition // Frontier Materials & TechNlogies. 2024. V. 2. P. 87—100. doi: 10.18323/2782-4039-2024-2-68-8. EDN: ZTZLQF.
  25. Murav’eva O.V., Brester A.F., Vladykin A.L. Regularities of the field focus of the through-type electromagnetic acoustic transducer of transverse waves // Kontrol’. Diagnostika. 2023. V. 26. No. 9 (303). P. 27—41. doi: 10.14489/td.2023.09.pp.027-041. EDN: OYSXOJ.
  26. Strizhak V.A., Pryakhin A.V., Khasanov R.R., Efremov A.B. Hardware-software complex for rods control by mirror-shadow method using multiple reflections // Journal of Instrument Engineering. 2017. V. 60. No. 6. P. 565—571. EDN: YTPNDZ.
  27. Grishchenko A.I., Modestov V.S., Polyansky V.A., Tretyakov D.A., Shtukin L.V. Experimental investigation of the acoustic anisotropy field in the sample with a stress concentrator // St. Petersburg Polytechnic University Journal: Physics and Mathematics. 2017. V. 10. No. 1. P. 121—129. doi: 10.18721/JPM.10112. EDN: YJQEQZ.
  28. Muravyev V.V., Zuyev L.B., Komarov K.L. Skorost zvuka i struktura staley i splavov. Novosibirsk: Federalnoye gosudarstvennoye unitarnoye predpriyatiye «Akademicheskiy nauchno-izdatelskiy. proizvodstvenno-poligraficheskiy i knigorasprostranitelskiy tsentr «Nauka». 1996. 184 p. ISBN 5-02-031211-8. EDN QCESRR.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry and designations of the railway spring (a); automotive spring (b).

Download (223KB)
3. Fig. 2. Railway and automobile springs with installed EMA transducers and transducers based on flexible piezo film type.

Download (380KB)
4. Fig. 3. Principle of operation of EMA transverse wave transducer (a) and PVDF-based piezoelectric transducer for longitudinal waves (b).

Download (232KB)
5. Fig. 4. Series of multiple reflections along the diameter of the coiled bar for transverse (a) and longitudinal (b) waves for a car spring.

Download (903KB)
6. Fig. 5. Relationship between transverse and longitudinal wave velocities.

Download (103KB)
7. Fig. 6. Results of 3D-scanning of a car spring (a); dependence of the coiling diameter on the length of the coiled bar (b).

Download (248KB)
8. Fig. 7. Dependences of longitudinal (a) and transverse (b) wave velocities along the length of the coiled bar L of an automotive spring.

Download (225KB)
9. Fig. 8. Dependences of Young's modulus (a), shear modulus (b) and Poisson's ratio (c) along the length of the coiled rod L of the car spring.

Download (362KB)
10. Fig. 9. Dependences of longitudinal (a) and transverse (b) wave velocities along the length of the coiled rod L of the railway spring.

Download (157KB)
11. Fig. 10. Dependences of Young's modulus (a), shear modulus (b) and Poisson's ratio (c) along the length of the coiled rod L of the railway spring.

Download (248KB)

Copyright (c) 2025 Russian Academy of Sciences