Ultrasonic Evaluation of Residual Stresses in AISI 316Ti Steel Specimen after Laser Shock Peening
- Authors: Gonchar A.V.1, Plekhov O.A.2, Kurashkin K.V.1, Gachegova E.A.2, Vshivkov A.N.3, Panteleev I.A.2
-
Affiliations:
- Institute of Mechanical Engineering of the of the Russian Academy of Sciences
- Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences
- Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
- Issue: No 4 (2025)
- Pages: 16-28
- Section: Acoustic methods
- URL: https://archivog.com/0130-3082/article/view/681194
- DOI: https://doi.org/10.31857/S0130308225040028
- ID: 681194
Cite item
Abstract
Residual stresses induced by laser shock peening in the near-surface layer in AISI 316Ti austenitic stainless steel specimen were measured by ultrasonic technique using critically refracted longitudinal waves. The results of ultrasonic measurements were compared with the results obtained by hole drilling method. The values of the residual stresses induced by laser shock peening, the initial residual stresses in the rolled sheet and the yield strength of the material were compared. The thermal stability of laser-induced residual stresses after annealing the specimen for 5 hours at the temperature of 200 °C and re-annealing for 5 hours at the temperature of 280 °C was investigated. The results of study were analyzed taking into account the accepted assumptions, limitations and uncertainties. The structure near the untreated and laser-treated surface was studied using optical and scanning electron microscopes. The directions of further studies for the development of nondestructive technique for ultrasonic evaluation of residual stresses induced by laser shock peening of the surface were proposed.
Full Text

About the authors
A. V. Gonchar
Institute of Mechanical Engineering of the of the Russian Academy of Sciences
Author for correspondence.
Email: avg-ndt@mail.ru
Russian Federation, 85, Belinsky St., Nizhny Novgorod, 603024
O. A. Plekhov
Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences
Email: poa@icmm.ru
Russian Federation, 1, Academic Korolev St., Perm, 614068
K. V. Kurashkin
Institute of Mechanical Engineering of the of the Russian Academy of Sciences
Email: kurashkin@ipmran.ru
Russian Federation, 85, Belinsky St., Nizhny Novgorod, 603024
E. A. Gachegova
Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences
Email: gachegova.e@icmm.ru
Russian Federation, 1, Academic Korolev St., Perm, 614068
A. N. Vshivkov
Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
Email: vshivkov.a@icmm.ru
Russian Federation, 1, Academic Korolev St., Perm, 614068
I. A. Panteleev
Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences
Email: pia@icmm.ru
Russian Federation, 1, Academic Korolev St., Perm, 614068
References
- Tsuji N., Tanaka S., Takasugi T. Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti—6Al—4V alloy // Surf. Coat. Technol. 2009. V. 203. P. 1400—1405. DOI: https://doi.org/10.1016/j.surfcoat.2008.11.013
- Mapelli C., Manes A., Giglio M., Mombelli D., Giudici L., Baldizzone C., Gruttadauria A. Survey about effects of shot peening conditions on fatigue performances of Ti—6Al—4V mechanical specimens featured by different cross-section geometries // Mater. Sci. Technol. 2012. V. 28 (5). P. 543—548. DOI: https://doi.org/10.1179/1743284711Y.0000000096
- Sandá A., García Navas V., Gonzalo O. Surface state of Inconel 718 ultrasonic shot peened: Effect of processing time, material and quantity of shot balls and distance from radiating surface to sample // Mater. Des. 2011. V. 32. P. 2213—2220. DOI: https://doi.org/10.1016/j.matdes.2010.11.024
- Kumar S., Chattopadhyay K., Singh V. Effect of ultrasonic shot peening on LCF behavior of the Ti–6Al–4V alloy // J. Alloys Compd. 2017. V. 724. P. 187—197. DOI: https://doi.org/10.1016/j.jallcom.2017.07.014
- Prevey P.S., Ravindranath R.A., Shepard M., Gabb T. Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications // ASME. 2003. DOI: https://doi.org/10.1115/1.1807414
- Zhang Q., Ye Y., Yang Y., Zhang L., Huang T., Dong Y., Vasudevan V.K., Ye C., Ding H. Review of low-plasticity burnishing and its applications // Adv. Eng. Mater. 2022. V. 24. No. 11. Art. 2200365. DOI: https://doi.org/10.1002/adem.202200365
- Shiryaev А.А., Milenin A.S. Hardening methods influence on fatigue strength of the compressor blades with stress concentrators // BMSTU Journal of Mechanical Engineering. 2024. No. 9. P. 72—81. (In Russian)
- Montross C. S., Wei T., Lin Y., Clark G., Mai Y.W. Laser shock processing and its effects on microstructure and properties of metal alloys: a review // Int. J. Fatigue. 2002. V. 24. P. 1021—1036. DOI: https://doi.org/10.1016/S0142-1123(02)00022-1
- Ding K., Ye L. Laser Shock Peening: Performance and Process Simulation. UK, Cambridge: Woodhead Publishing Ltd., 2006. 162 p.
- Gachegova E.A., Sikhamov R., Ventzke V., Kashaev N., Plekhov O.A. Influence of laser shock peening on low- and high-cycle fatigue of an OT4-0 titanium alloy // J. Appl. Mech. Tech. Phy. 2022. V. 63. P. 335—342. https://doi.org/10.1134/S0021894422020171
- Zhelnin M., Kostina A., Iziumova A., Vshivkov A., Gachegova E., Plekhov O., Swaroop S. Fatigue life investigation of notched TC4 specimens subjected to different patterns of laser shock peening // Frattura ed Integrità Strutturale. 2023. V. 65. P. 100—111. https://doi.org/10.3221/IGF-ESIS.65.08
- Rossini N.S., Dassisti M., Benyounis K.Y., Olabi A.G. Methods of measuring residual stresses in components // J. Mater. Des. 2012. V. 35. P. 572—88.
- Hughes D.S., Kelly J.L. Second-Order Elastic Deformation of Solids // Phys. Rev. 1953. V. 92. No. 5. P. 1145—1149. https://doi.org/10.1103/PhysRev.92.1145
- Nikitina N.Ye. Acoustoelasticity — experience of practical use. Nizhny Novgorod: TALAM, 2005. 208 p. (In Russian)
- Anisimov V.A., Katorgin B.I., Kutsenko A.N., Malakhov V.P., Rudakov A.S., Chvanov V.K. Acoustic tensometry // Klyuev V.V. (ed.) Nondestructive control: Handbook. Moscow: Mashinostroenie, 2006. V. 4. 736 p. (In Russian)
- Egle D.M., Bray D.E. Measurement of acoustoelastic and third-order elastic constants for rail steel // J. Acoust. Soc. Am. 1976. V. 60. No. 3. P. 741—744. https://doi.org/10.1121/1.381146
- Song W., Xu C., Pan Q., Song J. Nondestructive testing and characterization of residual stress field using an ultrasonic method // Chin. J. Mech. Eng. 2016. V. 29. P. 365—37. https://doi.org/10.3901/CJME.2015.1023.126
- Kurashkin K.V., Kirillov A.G., Gonchar A.V. Use of longitudinal critically refracted waves to determine residual and temperature stresses in rails // Acoustical Physics. 2024. V. 70. No. 1. P. 51—57.
- Razygraev N.P. Physics, terminology and technology in ultrasonic testing with head waves // Defectoscopiya. 2020. No. 9. P. 3—19. doi: 10.31857/S0130308220090018 (in Russian)
- Javadi Yashar, Akhlaghi Mehdi, Najafabadi Mehdi Ahmadi. Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates // Materials & Design. 2013. V. 45. P. 628—642. https://doi.org/10.1016/j.matdes.2012.09.038
- Liu Y., Liu E., Chen Y., Wang X., Sun C., Tan J. Study on Propagation Depth of Ultrasonic Longitudinal Critically Refracted (LCR) Wave // Sensors. 2020. V. 20. P. 5724. https://doi.org/10.3390/s20195724
- Bychenok V.A., Kinzhagulov I.Y., Berkutov I.V., Marusin M.P., Shcherba I.Y. Laser — ultrasonic generator application for intense — deformed condition definition of products special materials // Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2013. No. 4 (86). P. 107—114.
- Karabutov A.A., Podymova N.B., Cherepetskaya E.B. Determination of uniaxial stresses in steel structures by the laser-ultrasonic method // J. Appl. Mech. Tech. Phy. 2017. V. 58. No. 3. P. 503—510. https://doi.org/10.1134/S0021894417030154
- Marusina M.Y., Fedorov A.V., Bychenok V.A., Berkutov I.V. Ultrasonic Laser Diagnostics of Residual Stresses // Meas. Tech. 2015. V. 57. P. 1154—1159. https://doi.org/10.1007/s11018-015-0595-4
- ASTM — A240/A240M Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.
- Gonchar A., Solovyov A., Klyushnikov V. Ultrasonic Study of Longitudinal Critically Refracted and Bulk Waves of the Heat-Affected Zone of a Low-Carbon Steel Welded Joint under Fatigue // Acoustics. 2024. No. 6. P. 593—609. https://doi.org/10.3390/acoustics6030032
- Haibo Liu, Yapeng Li, Te Li, Xiang Zhang, Yankun Liu, Kuo Liu, Yongqing Wang. Influence factors analysis and accuracy improvement for stress measurement using ultrasonic longitudinal critically refracted (LCR) wave // Applied Acoustics. 2018. V. 141. P. 178—187. https://doi.org/10.1016/j.apacoust.2018.07.017
- Tanala E., Bourse G., Fremiot M., De Belleval J.F. Determination of near surface residual stresses on welded joints using ultrasonic methods // NDT & E International. 1995. V. 28. Is. 2. P. 83—88. https://doi.org/10.1016/0963-8695(94)00013-A
- Khlybov A.A., Uglov A.L., Rodyushkin V.M., Katasonov Y.A., Katasonov O.Y. The determination of mechanical stresses using rayleigh surface waves excited by a magnetoacoustic transducer // Russian Journal of Nondestructive Testing. 2014. V. 50. No. 12. P. 701—707.
- GOST R 71316—2024. Additives technologies. Products made by additive technologies. Determination of residual stresses by the hole-drilling method. M.: Russian Institute of Standardization, 2024. (In Russian)
- ASTM International. Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, 2013.
- Schajer G.S. Measurement of Non-Uniform Residual Stresses Using the Hole-Drilling Method. Part I — Stress Calculation Procedures // J. Eng. Mater. Technol. 1988. V. 110. P. 338—343. https://doi.org/10.1115/1.3226059
- Corrêa Fábio Junkes, Alves Jahnert Frederico, Pereira Tomás Jucélio. Residual stress profile determination by the hole-drilling method with calibration coefficients obtained using FEM // J. Theor. Appl. Mech. 2021. V. 59. P. 661—673. https://doi.org/10.15632/jtam-pl/141686
- Gonchar A.V., Klyushnikov V.A., Mishakin V.V. The effect of plastic deformation and subsequent heat treatment on the acoustic and magnetic properties of 12Kh18N10T steel // 2019. V. 85. No. 2. P. 23—28. doi: 10.26896/1028-6861-2019-85-2-23-28 (In Russian)
- Mishakin V.V., Gonchar A.V., Klyushnikov V.A., Kurashkin K.V., Fomin A.E., Sergeeva O.A. Monitoring the state of stainless steel under cyclic deformation by the acoustic and eddy current methods // Measurement Techniques. 2021. V. 64. No. 2. P. 145—150.
- Pereira P., Santos A.A. Influence of Anisotropy Generated by Rolling on the Stress Measurement by Ultrasound in 7050 T7451 Aluminum // Exp. Mech. 2013. V. 53. P. 415—425. https://doi.org/10.1007/s11340-012-9647-8
- Uglov A.L., Khlybov A.A. On the inspection of the stressed state of anisotropic steel pipelines using the acoustoelasticity method // Russian Journal of Nondestructive Testing. 2015. V. 51. No. 4. P. 210—216.
- Wentong Z., Bing Z., Wenrui B., Zhanyong W. Research on Ultrasonic Synchronous Detection Method for Material Residual Stress and Thickness // Defectoskopiya. 2024. No. 11. P. 30—45. doi: 10.31857/S0130308224110037
- Marusina M.Y., Fedorov A.V., Bychenok V.A.,Berkutov I.V. Evaluation of the Influence of External Factors in Ultrasonic Testing of Stress-Strain States // Meas Tech. 2017. V. 59. P. 1165—1169. https://doi.org/10.1007/s11018-017-1109-3
- Mironov S., Ozerov M., Kalinenko A., Stepanov N., Salishchev G., Zherebtsov S., Plekhov O., Sikhamov R., Ventzke V., Kashaev N., Semiatin L. On the relationship between microstructure and residual stress in laser-shock-peened Ti-6Al-4V // Journal of Alloys and Compounds. 2022. V. 900. P. 163383.
Supplementary files
