Ultrasonic Evaluation of Residual Stresses in AISI 316Ti Steel Specimen after Laser Shock Peening

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Residual stresses induced by laser shock peening in the near-surface layer in AISI 316Ti austenitic stainless steel specimen were measured by ultrasonic technique using critically refracted longitudinal waves. The results of ultrasonic measurements were compared with the results obtained by hole drilling method. The values of the residual stresses induced by laser shock peening, the initial residual stresses in the rolled sheet and the yield strength of the material were compared. The thermal stability of laser-induced residual stresses after annealing the specimen for 5 hours at the temperature of 200 °C and re-annealing for 5 hours at the temperature of 280 °C was investigated. The results of study were analyzed taking into account the accepted assumptions, limitations and uncertainties. The structure near the untreated and laser-treated surface was studied using optical and scanning electron microscopes. The directions of further studies for the development of nondestructive technique for ultrasonic evaluation of residual stresses induced by laser shock peening of the surface were proposed.

Full Text

Restricted Access

About the authors

A. V. Gonchar

Institute of Mechanical Engineering of the of the Russian Academy of Sciences

Author for correspondence.
Email: avg-ndt@mail.ru
Russian Federation, 85, Belinsky St., Nizhny Novgorod, 603024

O. A. Plekhov

Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences

Email: poa@icmm.ru
Russian Federation, 1, Academic Korolev St., Perm, 614068

K. V. Kurashkin

Institute of Mechanical Engineering of the of the Russian Academy of Sciences

Email: kurashkin@ipmran.ru
Russian Federation, 85, Belinsky St., Nizhny Novgorod, 603024

E. A. Gachegova

Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences

Email: gachegova.e@icmm.ru
Russian Federation, 1, Academic Korolev St., Perm, 614068

A. N. Vshivkov

Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences

Email: vshivkov.a@icmm.ru
Russian Federation, 1, Academic Korolev St., Perm, 614068

I. A. Panteleev

Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences

Email: pia@icmm.ru
Russian Federation, 1, Academic Korolev St., Perm, 614068

References

  1. Tsuji N., Tanaka S., Takasugi T. Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti—6Al—4V alloy // Surf. Coat. Technol. 2009. V. 203. P. 1400—1405. DOI: https://doi.org/10.1016/j.surfcoat.2008.11.013
  2. Mapelli C., Manes A., Giglio M., Mombelli D., Giudici L., Baldizzone C., Gruttadauria A. Survey about effects of shot peening conditions on fatigue performances of Ti—6Al—4V mechanical specimens featured by different cross-section geometries // Mater. Sci. Technol. 2012. V. 28 (5). P. 543—548. DOI: https://doi.org/10.1179/1743284711Y.0000000096
  3. Sandá A., García Navas V., Gonzalo O. Surface state of Inconel 718 ultrasonic shot peened: Effect of processing time, material and quantity of shot balls and distance from radiating surface to sample // Mater. Des. 2011. V. 32. P. 2213—2220. DOI: https://doi.org/10.1016/j.matdes.2010.11.024
  4. Kumar S., Chattopadhyay K., Singh V. Effect of ultrasonic shot peening on LCF behavior of the Ti–6Al–4V alloy // J. Alloys Compd. 2017. V. 724. P. 187—197. DOI: https://doi.org/10.1016/j.jallcom.2017.07.014
  5. Prevey P.S., Ravindranath R.A., Shepard M., Gabb T. Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications // ASME. 2003. DOI: https://doi.org/10.1115/1.1807414
  6. Zhang Q., Ye Y., Yang Y., Zhang L., Huang T., Dong Y., Vasudevan V.K., Ye C., Ding H. Review of low-plasticity burnishing and its applications // Adv. Eng. Mater. 2022. V. 24. No. 11. Art. 2200365. DOI: https://doi.org/10.1002/adem.202200365
  7. Shiryaev А.А., Milenin A.S. Hardening methods influence on fatigue strength of the compressor blades with stress concentrators // BMSTU Journal of Mechanical Engineering. 2024. No. 9. P. 72—81. (In Russian)
  8. Montross C. S., Wei T., Lin Y., Clark G., Mai Y.W. Laser shock processing and its effects on microstructure and properties of metal alloys: a review // Int. J. Fatigue. 2002. V. 24. P. 1021—1036. DOI: https://doi.org/10.1016/S0142-1123(02)00022-1
  9. Ding K., Ye L. Laser Shock Peening: Performance and Process Simulation. UK, Cambridge: Woodhead Publishing Ltd., 2006. 162 p.
  10. Gachegova E.A., Sikhamov R., Ventzke V., Kashaev N., Plekhov O.A. Influence of laser shock peening on low- and high-cycle fatigue of an OT4-0 titanium alloy // J. Appl. Mech. Tech. Phy. 2022. V. 63. P. 335—342. https://doi.org/10.1134/S0021894422020171
  11. Zhelnin M., Kostina A., Iziumova A., Vshivkov A., Gachegova E., Plekhov O., Swaroop S. Fatigue life investigation of notched TC4 specimens subjected to different patterns of laser shock peening // Frattura ed Integrità Strutturale. 2023. V. 65. P. 100—111. https://doi.org/10.3221/IGF-ESIS.65.08
  12. Rossini N.S., Dassisti M., Benyounis K.Y., Olabi A.G. Methods of measuring residual stresses in components // J. Mater. Des. 2012. V. 35. P. 572—88.
  13. Hughes D.S., Kelly J.L. Second-Order Elastic Deformation of Solids // Phys. Rev. 1953. V. 92. No. 5. P. 1145—1149. https://doi.org/10.1103/PhysRev.92.1145
  14. Nikitina N.Ye. Acoustoelasticity — experience of practical use. Nizhny Novgorod: TALAM, 2005. 208 p. (In Russian)
  15. Anisimov V.A., Katorgin B.I., Kutsenko A.N., Malakhov V.P., Rudakov A.S., Chvanov V.K. Acoustic tensometry // Klyuev V.V. (ed.) Nondestructive control: Handbook. Moscow: Mashinostroenie, 2006. V. 4. 736 p. (In Russian)
  16. Egle D.M., Bray D.E. Measurement of acoustoelastic and third-order elastic constants for rail steel // J. Acoust. Soc. Am. 1976. V. 60. No. 3. P. 741—744. https://doi.org/10.1121/1.381146
  17. Song W., Xu C., Pan Q., Song J. Nondestructive testing and characterization of residual stress field using an ultrasonic method // Chin. J. Mech. Eng. 2016. V. 29. P. 365—37. https://doi.org/10.3901/CJME.2015.1023.126
  18. Kurashkin K.V., Kirillov A.G., Gonchar A.V. Use of longitudinal critically refracted waves to determine residual and temperature stresses in rails // Acoustical Physics. 2024. V. 70. No. 1. P. 51—57.
  19. Razygraev N.P. Physics, terminology and technology in ultrasonic testing with head waves // Defectoscopiya. 2020. No. 9. P. 3—19. doi: 10.31857/S0130308220090018 (in Russian)
  20. Javadi Yashar, Akhlaghi Mehdi, Najafabadi Mehdi Ahmadi. Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates // Materials & Design. 2013. V. 45. P. 628—642. https://doi.org/10.1016/j.matdes.2012.09.038
  21. Liu Y., Liu E., Chen Y., Wang X., Sun C., Tan J. Study on Propagation Depth of Ultrasonic Longitudinal Critically Refracted (LCR) Wave // Sensors. 2020. V. 20. P. 5724. https://doi.org/10.3390/s20195724
  22. Bychenok V.A., Kinzhagulov I.Y., Berkutov I.V., Marusin M.P., Shcherba I.Y. Laser — ultrasonic generator application for intense — deformed condition definition of products special materials // Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2013. No. 4 (86). P. 107—114.
  23. Karabutov A.A., Podymova N.B., Cherepetskaya E.B. Determination of uniaxial stresses in steel structures by the laser-ultrasonic method // J. Appl. Mech. Tech. Phy. 2017. V. 58. No. 3. P. 503—510. https://doi.org/10.1134/S0021894417030154
  24. Marusina M.Y., Fedorov A.V., Bychenok V.A., Berkutov I.V. Ultrasonic Laser Diagnostics of Residual Stresses // Meas. Tech. 2015. V. 57. P. 1154—1159. https://doi.org/10.1007/s11018-015-0595-4
  25. ASTM — A240/A240M Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.
  26. Gonchar A., Solovyov A., Klyushnikov V. Ultrasonic Study of Longitudinal Critically Refracted and Bulk Waves of the Heat-Affected Zone of a Low-Carbon Steel Welded Joint under Fatigue // Acoustics. 2024. No. 6. P. 593—609. https://doi.org/10.3390/acoustics6030032
  27. Haibo Liu, Yapeng Li, Te Li, Xiang Zhang, Yankun Liu, Kuo Liu, Yongqing Wang. Influence factors analysis and accuracy improvement for stress measurement using ultrasonic longitudinal critically refracted (LCR) wave // Applied Acoustics. 2018. V. 141. P. 178—187. https://doi.org/10.1016/j.apacoust.2018.07.017
  28. Tanala E., Bourse G., Fremiot M., De Belleval J.F. Determination of near surface residual stresses on welded joints using ultrasonic methods // NDT & E International. 1995. V. 28. Is. 2. P. 83—88. https://doi.org/10.1016/0963-8695(94)00013-A
  29. Khlybov A.A., Uglov A.L., Rodyushkin V.M., Katasonov Y.A., Katasonov O.Y. The determination of mechanical stresses using rayleigh surface waves excited by a magnetoacoustic transducer // Russian Journal of Nondestructive Testing. 2014. V. 50. No. 12. P. 701—707.
  30. GOST R 71316—2024. Additives technologies. Products made by additive technologies. Determination of residual stresses by the hole-drilling method. M.: Russian Institute of Standardization, 2024. (In Russian)
  31. ASTM International. Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, 2013.
  32. Schajer G.S. Measurement of Non-Uniform Residual Stresses Using the Hole-Drilling Method. Part I — Stress Calculation Procedures // J. Eng. Mater. Technol. 1988. V. 110. P. 338—343. https://doi.org/10.1115/1.3226059
  33. Corrêa Fábio Junkes, Alves Jahnert Frederico, Pereira Tomás Jucélio. Residual stress profile determination by the hole-drilling method with calibration coefficients obtained using FEM // J. Theor. Appl. Mech. 2021. V. 59. P. 661—673. https://doi.org/10.15632/jtam-pl/141686
  34. Gonchar A.V., Klyushnikov V.A., Mishakin V.V. The effect of plastic deformation and subsequent heat treatment on the acoustic and magnetic properties of 12Kh18N10T steel // 2019. V. 85. No. 2. P. 23—28. doi: 10.26896/1028-6861-2019-85-2-23-28 (In Russian)
  35. Mishakin V.V., Gonchar A.V., Klyushnikov V.A., Kurashkin K.V., Fomin A.E., Sergeeva O.A. Monitoring the state of stainless steel under cyclic deformation by the acoustic and eddy current methods // Measurement Techniques. 2021. V. 64. No. 2. P. 145—150.
  36. Pereira P., Santos A.A. Influence of Anisotropy Generated by Rolling on the Stress Measurement by Ultrasound in 7050 T7451 Aluminum // Exp. Mech. 2013. V. 53. P. 415—425. https://doi.org/10.1007/s11340-012-9647-8
  37. Uglov A.L., Khlybov A.A. On the inspection of the stressed state of anisotropic steel pipelines using the acoustoelasticity method // Russian Journal of Nondestructive Testing. 2015. V. 51. No. 4. P. 210—216.
  38. Wentong Z., Bing Z., Wenrui B., Zhanyong W. Research on Ultrasonic Synchronous Detection Method for Material Residual Stress and Thickness // Defectoskopiya. 2024. No. 11. P. 30—45. doi: 10.31857/S0130308224110037
  39. Marusina M.Y., Fedorov A.V., Bychenok V.A.,Berkutov I.V. Evaluation of the Influence of External Factors in Ultrasonic Testing of Stress-Strain States // Meas Tech. 2017. V. 59. P. 1165—1169. https://doi.org/10.1007/s11018-017-1109-3
  40. Mironov S., Ozerov M., Kalinenko A., Stepanov N., Salishchev G., Zherebtsov S., Plekhov O., Sikhamov R., Ventzke V., Kashaev N., Semiatin L. On the relationship between microstructure and residual stress in laser-shock-peened Ti-6Al-4V // Journal of Alloys and Compounds. 2022. V. 900. P. 163383.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Research specimen with a longitudinal critically refracted wave sensor.

Download (259KB)
3. Fig. 2. Schematic diagram of the installation for ultrasonic measurements: 1 - sample; 2 - sensor of longitudinal critically refracted waves; 3 - radiating piezoelectric plate; 4 - first receiving piezoelectric plate; 5 - second receiving piezoelectric plate; 6 - direction of propagation of longitudinal critically refracted wave; 7 - generator of electric pulses; 8 - digital oscilloscope; 9 - laptop with installed software.

Download (234KB)
4. Fig. 3. Residual stresses in the specimen (hole drilling method).

Download (298KB)
5. Fig. 4. Residual stresses resulting from laser treatment.

Download (270KB)
6. Fig. 5. Sample structure observed in an optical microscope near the untreated (left) and laser-treated (right) surface.

Download (601KB)
7. Fig. 6. Sample structure obtained with a scanning electron microscope near the untreated (left) and laser-treated (right) surface.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences