Comparison of methods for changing the spectrum of radiation of a pulse x-ray source to determine the most effective two-energy image processing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For detecting substances with similar chemical composition and density, one of the promising methods of non-destructive testing is dual-energy processing of X-ray images. In particular, dual-energy transformation algorithms can be used to search for minerals hidden within barren rock. This method is most effective when the conditions for registering X-ray images and energy levels are properly selected. This study compares the effectiveness of image processing using the dual-energy method for three cases of spectral composition variation: firstly, as a result of adjusting the voltage on the X-ray tube; secondly, by attenuating low-energy radiation through the use of a copper filter; and thirdly, by combining these two methods. Beryl particles embedded in ground muscovite are used as samples for detection. The study utilizes a pulsed X-ray radiation source that generates radiation pulses of nanosecond duration. An original high-voltage generator scheme has been implemented for the method of regulating radiation energy by changing the peak voltage on the X-ray tube. The use of X-ray sources of this type enables the acquisition of high-resolution X-ray images of moving objects.

Full Text

Restricted Access

About the authors

A. A. Komarskiy

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: aakomarskiy@gmail.com
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106

S. R. Korzhenevskiy

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Email: korser1970@yandex.ru
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106

A. V. Ponomarev

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Email: avponomarev@ya.ru
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106

A. S. Chepusov

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Email: avponomarev@ya.ru
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106

V. V. Krinitzin

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Email: avponomarev@ya.ru
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106

O. D. Krasniy

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Email: avponomarev@ya.ru
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106

References

  1. Blake G.M., Fogelman I. Technical principles of dual energy X-ray absorptiometry // Seminars in Nuclear Medicine. 1997. V. 27. No. 3. P. 210—228. doi: 10.1016/S0001-2998(97)80025-6
  2. Ramos R.M.L., Arman J.A., Galeano N.A., Hernandez A.M., Gomez J.M.G., Molinero J.G. Dual energy X-ray absorptimetry: Fundamentals, methodology, and clinical applications // Radiología (English Edition). 2012. V. 54. No. 5. P. 410—423. doi: 10.1016/j.rxeng.2011.09.005
  3. Rebuffel V., Dinten J.M. Dual-energy X-ray imaging: benefits and limits. Insight - Non-Destructive Testing and Condition Monitoring. 2007. V. 49. P. 589—594. doi: 10.1784/insi.2007.49.10.589
  4. Johnson T.R. Dual-energy CT: general principles // American Journal of Roentgenology. 2012. V. 199. No. 5. P. 3—8. doi: 10.2214/AJR.12.9116
  5. Abbasi S., Mohammadzadeh M., Zamzamian M. A novel dual high-energy X-ray imaging method for materials discrimination // Nucl. Instrum. Methods Phys. Res. A. 2019. V. 930. P. 82—86. doi: 10.1016/j.nima.2019.03.064
  6. Kanno I., Yamashita Y., Kimura M., Inoue F. Effective atomic number measurement with energy-resolved X-ray computed tomography // Nucl. Instrum. Methods Phys. Res. A. 2015. V. 787. P. 121—124. doi: 10.1016/j.nima.2014.11.072
  7. Iovea M., Neagu M., Duliu O.G., Oaie G., Szobotka S., Mateiasi G. A Dedicated on-board dual-energy computer tomograph // J. Nondestruct. Eval. 2011. V. 30. P. 164—171. doi: 10.1007/s10921-011- 0104-x
  8. Komarskiy A.A., Korzhenevskiy S.R., Komarov N.A. Detection of plastic articles behind metal layers of variable thickness on dual-energy X-ray images using artificial neural networks // AIP Conf. Proc. 2023. V. 2726. No. 1. P. 020012. doi: 10.1063/5.0134249
  9. Yalçın O., Reyhancan İ.A. Detection of explosive materials in dual-energy X-Ray security systems // Nuclear Inst. And Methods in Physics Research. A. 2022. V. 1040. No. 1. P. 167265. doi: 10.1016/j.nima.2022.167265
  10. Li B., Yadava G., Hsieh J. Quantification of head and body CTDI(VOL) of dual-energy x-ray CT with fast-kVp switching // Medical Physics. 2011. V. 38. No. 5. P. 2595—2601. doi: 10.1118/1.3582701
  11. Alvarez R.E. Invertibility of the dual energy x-ray data transform // Medical Physics. 2019. V. 46. No. 1. P. 93—103. doi: 10.1002/mp.13255
  12. Udod V.A., Osipov S.P., Nazarenko S.Yu. Algorithm for Optimizing the Parameters of Sandwich X-ray Detectors // X-ray Methods. 2023. V. 59. P. 359—373. doi: 10.1134/S1061830923700298
  13. Osipov S.P., Udod V.A., Wang Y. Identification of materials in X-Ray inspections of objects by the dualenergy method // Russian Journal of Nondestructive Testing. 2017. V. 53. No. 8. P. 568—587. doi: 10.1134/S1061830917080058
  14. Macdonald R. Design and implementation of a dual-energy X-ray imaging system for organic material detection in an airport security application // Proceedings of the SPIE. 2001. V. 4301. P. 31—41. doi: 10.1117/12.420922
  15. Rosenfeld A., Alnaghy S., Petasecca M., Cutajar D., Lerch M., Pospisil S., Giacometti V., Schulte R., Rosso V., Würl M., Granja C., Martišíková M., Parodi K. Medipix detectors in radiation therapy for advanced quality-assurance // Radiation Measurements. 2020. V. 130. P. 106211. doi: 10.1016/j.radmeas.2019.106211
  16. Bauer C., Wagner R., Orberger B., Firsching M., Ennen A., Pina C.G., Wagner C., Honarmand M., Nabatian G., Monsef I. Potential of Dual and Multi Energy XRT and CT Analyses on Iron Formations // Sensors. 2021. V. 21. P. 2455. doi: 10.3390/s21072455
  17. Tonai S., Kubo Y., Tsang M.Y., Bowden S., Ide K., Hirose T., Kamiya N., Yamamoto Y., Yang K., Yamada Y. A New Method for Quality Control of Geological Cores by X-Ray Computed Tomography: Application in IODP Expedition 370 // Frontiers in Earth Science. 2019. V. 7. P. 1—13. doi: 10.3389/feart.2019.00117
  18. Ghorbani Y., Becker M., Petersen J., Morar S.H., Mainza A., Franzidis J.-P. Use of X-ray computed tomography to investigate crack distribution and mineral dissemination in sphalerite ore particles // Minerals Engineering. 2011. V. 24. No. 12. P. 1249—1257. doi: 10.1016/j.mineng.2011.04.008
  19. Zhang Yi.R., Yoon N., Holuszko M.E. Assessment of Sortability Using a Dual-Energy X-ray Transmission System for Studied Sulphide Ore // Minerals. 2021. V. 11. No. 5. P. 490. doi: 10.3390/min11050490
  20. Komarskiy A., Korzhenevskiy S., Ponomarev A., Chepusov A. Dual-Energy Processing of X-ray Images of Beryl in Muscovite Obtained Using Pulsed X-ray Sources // Sensors. 2023. V. 23. No. 9. P. 4393. doi: 10.3390/s23094393
  21. Firsching M., Bauer C., Wagner R., Ennen A., Ahsan A., Kampmann T.C., Tiu G., Valencia A., Casali A., Atenas M.G. REWO-SORT Sensor Fusion for Enhanced Ore Sorting: A Project Overview / In Proceedings of the Procemin-Geomet Conference 2019. Chile. 2019. P. 1—9.
  22. Udod V.A., Osipov S.P., Wang Y. Estimating the influence of quantum noises on the quality of material identification by the dual-energy method // Russian Journal of Nondestructive Testing. 2018. V. 54. No. 8. P. 585—600. doi: 10.1134/S1061830918080077
  23. Rukin S.N., Tsyranov S.N. Subnanosecond breakage of current in high-power semiconductor switches // Technical Physics Letters. 2000. V. 26. No. 9. P. 824—826. doi: 10.1134/1.1315507
  24. Korzhenevsky S.R., Bessonova V.A., Komarsky A.A., Motovilov V.A., Chepusov A.S. Selection of electrohydraulic grinding parameters for quartz ore // Journal of Mining Science. 2016. V. 52. No. 3. P. 493—496. doi: 10.1134/S1062739116030706
  25. Rukin S.N. Pulsed power technology based on semiconductor opening switches: A review // Review of Scientific Instruments. 2020. V. 91. No. 1. P. 011501. doi: 10.1063/1.5128297
  26. Komarskii A.A., Baiankin S.N., Mozharova I.E., Kuznetsov V.L., Korzhenevskii S.R. Use of diagnostic nanosecond X-ray pulse apparatuses // Vestnik rentgenologii i radiologii. 2015. V. 2. P. 42—46.
  27. Komarskiy A.A., Korzhenevskiy S.R., Ponomarev A.V., Komarov N.A. Pulsed X-ray source with the pulse duration of 50ns and the peak power of 70MW for capturing moving objects. // Journal of X-Ray Science and Technology. 2021. V. 29. No. 4. P. 567—576. doi: 10.3233/XST-210873
  28. Vasil’ev P.V., Lyubutin S.K., Pedos M.S., Ponomarev A.V., Rukin S.N., Slovikovskii B.G., Timoshenkov S.P., Cholakh S.O. A nanosecond SOS generator with a 20-kHz pulse repetition rate // Instrum. Exp. Tech. 2010. V. 53. P. 830—835. doi: 10.1134/s0020441210060114
  29. Chepusov A., Komarskiy A., Kuznetsov V. The influence of ion bombardment on emission properties of carbon materials // Applied Surface Science. 2014. V. 306. P. 94—97. doi: 10.1007/s10812-013-9747-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Structural diagram of the pulsed X-ray source.

Download (161KB)
3. Figure 2. Dependence of maximum voltages and currents of the pulsed X-ray tube on the voltage at the primary storage device.

Download (203KB)
4. Figure 3. Oscillograms of voltage and current pulses: maximum voltage 145 kV (a); maximum voltage 105 kV (b).

Download (402KB)
5. Figure 4. Emission spectra for the pulsed X-ray source at maximum voltage of 145 kV, 105 kV, and at 145 kV using a copper filter.

Download (285KB)
6. Figure 5. Photo of beryl particles with rectangular faces.

Download (195KB)
7. Figure 6. X-ray images of the study objects obtained at different spectral compositions.

Download (506KB)
8. Figure 7. Dual-energy processing when combining pairs of images obtained at different energy spectra of radiation. Beryl particles appear as darker inclusions (there are 3 beryl particles in the images, the largest one has a facet of 5 mm, the particle on the left has a facet of 3 mm, and the particle on top has a facet of 2 mm). In the directions indicated by the arrows, the number is the thickness of the sample (5 and 10 mm); v, h are the vertical and horizontal directions, respectively, along which the intensity distribution of the pixel brightness intensity is obtained in the following.

Download (770KB)
9. Figure 8. Pixel intensity profiles of dual-energy images for a 5 mm thick sample, the directions of the distributions are shown by the arrows in Fig. 7 from the top; 2, 3, and 5 mm are the sizes of the particle faces that fell into the distribution profiles.

Download (676KB)
10. Figure 9. Pixel intensity profiles of dual-energy images for a 10 mm thick sample, the directions of the distributions are shown by the arrows in Fig. 7 from the bottom; 2, 3, and 5 mm are the sizes of the faces of the beryl particles that fell into the distribution profiles.

Download (594KB)

Copyright (c) 2024 Russian Academy of Sciences