Comparison of methods for changing the spectrum of radiation of a pulse x-ray source to determine the most effective two-energy image processing
- Authors: Komarskiy A.A.1, Korzhenevskiy S.R.1, Ponomarev A.V.1, Chepusov A.S.1, Krinitzin V.V.1, Krasniy O.D.1
-
Affiliations:
- Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
- Issue: No 9 (2024)
- Pages: 40-51
- Section: Рентгеновские методы
- URL: https://archivog.com/0130-3082/article/view/649307
- DOI: https://doi.org/10.31857/S0130308224090044
- ID: 649307
Cite item
Abstract
For detecting substances with similar chemical composition and density, one of the promising methods of non-destructive testing is dual-energy processing of X-ray images. In particular, dual-energy transformation algorithms can be used to search for minerals hidden within barren rock. This method is most effective when the conditions for registering X-ray images and energy levels are properly selected. This study compares the effectiveness of image processing using the dual-energy method for three cases of spectral composition variation: firstly, as a result of adjusting the voltage on the X-ray tube; secondly, by attenuating low-energy radiation through the use of a copper filter; and thirdly, by combining these two methods. Beryl particles embedded in ground muscovite are used as samples for detection. The study utilizes a pulsed X-ray radiation source that generates radiation pulses of nanosecond duration. An original high-voltage generator scheme has been implemented for the method of regulating radiation energy by changing the peak voltage on the X-ray tube. The use of X-ray sources of this type enables the acquisition of high-resolution X-ray images of moving objects.
Full Text

About the authors
A. A. Komarskiy
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: aakomarskiy@gmail.com
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106
S. R. Korzhenevskiy
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Email: korser1970@yandex.ru
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106
A. V. Ponomarev
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Email: avponomarev@ya.ru
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106
A. S. Chepusov
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Email: avponomarev@ya.ru
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106
V. V. Krinitzin
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Email: avponomarev@ya.ru
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106
O. D. Krasniy
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Email: avponomarev@ya.ru
Russian Federation, 620110 Yekaterinburg, Amundsen St. 106
References
- Blake G.M., Fogelman I. Technical principles of dual energy X-ray absorptiometry // Seminars in Nuclear Medicine. 1997. V. 27. No. 3. P. 210—228. doi: 10.1016/S0001-2998(97)80025-6
- Ramos R.M.L., Arman J.A., Galeano N.A., Hernandez A.M., Gomez J.M.G., Molinero J.G. Dual energy X-ray absorptimetry: Fundamentals, methodology, and clinical applications // Radiología (English Edition). 2012. V. 54. No. 5. P. 410—423. doi: 10.1016/j.rxeng.2011.09.005
- Rebuffel V., Dinten J.M. Dual-energy X-ray imaging: benefits and limits. Insight - Non-Destructive Testing and Condition Monitoring. 2007. V. 49. P. 589—594. doi: 10.1784/insi.2007.49.10.589
- Johnson T.R. Dual-energy CT: general principles // American Journal of Roentgenology. 2012. V. 199. No. 5. P. 3—8. doi: 10.2214/AJR.12.9116
- Abbasi S., Mohammadzadeh M., Zamzamian M. A novel dual high-energy X-ray imaging method for materials discrimination // Nucl. Instrum. Methods Phys. Res. A. 2019. V. 930. P. 82—86. doi: 10.1016/j.nima.2019.03.064
- Kanno I., Yamashita Y., Kimura M., Inoue F. Effective atomic number measurement with energy-resolved X-ray computed tomography // Nucl. Instrum. Methods Phys. Res. A. 2015. V. 787. P. 121—124. doi: 10.1016/j.nima.2014.11.072
- Iovea M., Neagu M., Duliu O.G., Oaie G., Szobotka S., Mateiasi G. A Dedicated on-board dual-energy computer tomograph // J. Nondestruct. Eval. 2011. V. 30. P. 164—171. doi: 10.1007/s10921-011- 0104-x
- Komarskiy A.A., Korzhenevskiy S.R., Komarov N.A. Detection of plastic articles behind metal layers of variable thickness on dual-energy X-ray images using artificial neural networks // AIP Conf. Proc. 2023. V. 2726. No. 1. P. 020012. doi: 10.1063/5.0134249
- Yalçın O., Reyhancan İ.A. Detection of explosive materials in dual-energy X-Ray security systems // Nuclear Inst. And Methods in Physics Research. A. 2022. V. 1040. No. 1. P. 167265. doi: 10.1016/j.nima.2022.167265
- Li B., Yadava G., Hsieh J. Quantification of head and body CTDI(VOL) of dual-energy x-ray CT with fast-kVp switching // Medical Physics. 2011. V. 38. No. 5. P. 2595—2601. doi: 10.1118/1.3582701
- Alvarez R.E. Invertibility of the dual energy x-ray data transform // Medical Physics. 2019. V. 46. No. 1. P. 93—103. doi: 10.1002/mp.13255
- Udod V.A., Osipov S.P., Nazarenko S.Yu. Algorithm for Optimizing the Parameters of Sandwich X-ray Detectors // X-ray Methods. 2023. V. 59. P. 359—373. doi: 10.1134/S1061830923700298
- Osipov S.P., Udod V.A., Wang Y. Identification of materials in X-Ray inspections of objects by the dualenergy method // Russian Journal of Nondestructive Testing. 2017. V. 53. No. 8. P. 568—587. doi: 10.1134/S1061830917080058
- Macdonald R. Design and implementation of a dual-energy X-ray imaging system for organic material detection in an airport security application // Proceedings of the SPIE. 2001. V. 4301. P. 31—41. doi: 10.1117/12.420922
- Rosenfeld A., Alnaghy S., Petasecca M., Cutajar D., Lerch M., Pospisil S., Giacometti V., Schulte R., Rosso V., Würl M., Granja C., Martišíková M., Parodi K. Medipix detectors in radiation therapy for advanced quality-assurance // Radiation Measurements. 2020. V. 130. P. 106211. doi: 10.1016/j.radmeas.2019.106211
- Bauer C., Wagner R., Orberger B., Firsching M., Ennen A., Pina C.G., Wagner C., Honarmand M., Nabatian G., Monsef I. Potential of Dual and Multi Energy XRT and CT Analyses on Iron Formations // Sensors. 2021. V. 21. P. 2455. doi: 10.3390/s21072455
- Tonai S., Kubo Y., Tsang M.Y., Bowden S., Ide K., Hirose T., Kamiya N., Yamamoto Y., Yang K., Yamada Y. A New Method for Quality Control of Geological Cores by X-Ray Computed Tomography: Application in IODP Expedition 370 // Frontiers in Earth Science. 2019. V. 7. P. 1—13. doi: 10.3389/feart.2019.00117
- Ghorbani Y., Becker M., Petersen J., Morar S.H., Mainza A., Franzidis J.-P. Use of X-ray computed tomography to investigate crack distribution and mineral dissemination in sphalerite ore particles // Minerals Engineering. 2011. V. 24. No. 12. P. 1249—1257. doi: 10.1016/j.mineng.2011.04.008
- Zhang Yi.R., Yoon N., Holuszko M.E. Assessment of Sortability Using a Dual-Energy X-ray Transmission System for Studied Sulphide Ore // Minerals. 2021. V. 11. No. 5. P. 490. doi: 10.3390/min11050490
- Komarskiy A., Korzhenevskiy S., Ponomarev A., Chepusov A. Dual-Energy Processing of X-ray Images of Beryl in Muscovite Obtained Using Pulsed X-ray Sources // Sensors. 2023. V. 23. No. 9. P. 4393. doi: 10.3390/s23094393
- Firsching M., Bauer C., Wagner R., Ennen A., Ahsan A., Kampmann T.C., Tiu G., Valencia A., Casali A., Atenas M.G. REWO-SORT Sensor Fusion for Enhanced Ore Sorting: A Project Overview / In Proceedings of the Procemin-Geomet Conference 2019. Chile. 2019. P. 1—9.
- Udod V.A., Osipov S.P., Wang Y. Estimating the influence of quantum noises on the quality of material identification by the dual-energy method // Russian Journal of Nondestructive Testing. 2018. V. 54. No. 8. P. 585—600. doi: 10.1134/S1061830918080077
- Rukin S.N., Tsyranov S.N. Subnanosecond breakage of current in high-power semiconductor switches // Technical Physics Letters. 2000. V. 26. No. 9. P. 824—826. doi: 10.1134/1.1315507
- Korzhenevsky S.R., Bessonova V.A., Komarsky A.A., Motovilov V.A., Chepusov A.S. Selection of electrohydraulic grinding parameters for quartz ore // Journal of Mining Science. 2016. V. 52. No. 3. P. 493—496. doi: 10.1134/S1062739116030706
- Rukin S.N. Pulsed power technology based on semiconductor opening switches: A review // Review of Scientific Instruments. 2020. V. 91. No. 1. P. 011501. doi: 10.1063/1.5128297
- Komarskii A.A., Baiankin S.N., Mozharova I.E., Kuznetsov V.L., Korzhenevskii S.R. Use of diagnostic nanosecond X-ray pulse apparatuses // Vestnik rentgenologii i radiologii. 2015. V. 2. P. 42—46.
- Komarskiy A.A., Korzhenevskiy S.R., Ponomarev A.V., Komarov N.A. Pulsed X-ray source with the pulse duration of 50ns and the peak power of 70MW for capturing moving objects. // Journal of X-Ray Science and Technology. 2021. V. 29. No. 4. P. 567—576. doi: 10.3233/XST-210873
- Vasil’ev P.V., Lyubutin S.K., Pedos M.S., Ponomarev A.V., Rukin S.N., Slovikovskii B.G., Timoshenkov S.P., Cholakh S.O. A nanosecond SOS generator with a 20-kHz pulse repetition rate // Instrum. Exp. Tech. 2010. V. 53. P. 830—835. doi: 10.1134/s0020441210060114
- Chepusov A., Komarskiy A., Kuznetsov V. The influence of ion bombardment on emission properties of carbon materials // Applied Surface Science. 2014. V. 306. P. 94—97. doi: 10.1007/s10812-013-9747-y
Supplementary files
