Effect of symmetrical biaxial tension on the magnetic properties of the composite specimen of two steel plates with different mechanical and magnetic properties

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of studying the behavior of the magnetic characteristics of two-layer material containing layers of annealed sheet low-carbon Steel 15 and sheet metastable austenitic 12Kh18N9Т steel, subjected to cold rolling with a compression of 50 %, under biaxial symmetric tension have been presented. Experiments on biaxial deformation were carried out on the original biaxial testing machine, allowed to determine the physical properties of materials during elastic-plastic deformation independently along two axes. It has been shown that the coercive force of the studied two-layer material vary monotonically over the entire range of elastic-plastic biaxial deformation and can be used as an informative parameter for assessing the it’s stresses and deformations.

全文:

受限制的访问

作者简介

A. Mushnikov

Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: mushnikov@imach.uran.ru
俄罗斯联邦, Ekaterinburg

A. Povolotskaya

Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences; M.N. Mikheev lnstitute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: anna.povolotskaya.68@mail.ru
俄罗斯联邦, Ekaterinburg; Ekaterinburg

S. Zadvorkin

Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences

Email: kristina.kryucheva@mail.ru
俄罗斯联邦, Ekaterinburg

K. Kryucheva

Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences

Email: kristina.kryucheva@mail.ru
俄罗斯联邦, Ekaterinburg

参考

  1. Kostin V.N., Tsar’kova T.P., Loskutov V.E., Kostin K.V., Nichipuruk A.P., Lopatin V.V., Kostin K.V. Irreversible Changes in the Magnetization as Indicators of Stressed-Strained State of Ferromagnetic Objects // Defectoskopiya. 2009. No. 11. P. 54—67.
  2. Gorkunov E.S., Mushnikov A.N. Magnetic methods for estimating elastic stresses in ferromagnetic steels (review) // Kontrol’. Diagn. 2020. No. 12. P. 4—23.
  3. Roskosz M., Fryczowski K. Magnetic methods of characterization of active stresses in steel elements // Journal of Magnetism and Magnetic Materials. 2020. V. 499. Art. no. 166272.
  4. Perevertov O. Influence of the applied elastic tensile and compressive stress on the hysteresis curves of Fe–3%Si non-oriented steel // Journal of Magnetism and Magnetic Materials. 2017. V. 428. P. 223—228. doi: 10.1016/j.jmmm.2016.12.040
  5. Leuning N., Steentjes S., Schulte M., Bleck W., Hameyer K. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel // Journal of Magnetism and Magnetic Materials. 2016. V. 417. P. 42—48. doi: 10.1016/j.jmmm.2016.05.049
  6. Murav’ev V.V., Volkova L.V., Platunov A.V., Kulikov V.A. An electromagnetic–acoustic method for studying stress-strain states of rails // Defectoskopiya. 2016. No. 7. P. 12—20.
  7. Gorkunov E.S., Povolotskaya A.M., Zadvorkin S.M., Putilova E.A., Mushnikov A.N., Bazulin E.G., Vopilkin A.Kh. Some Features in the Behavior of Magnetic and Acoustic Characteristics of Hot-Rolled 08G2B Steel under Cyclic Loading // Defectoskopiya. 2019. No. 11. P. 21—31.
  8. Gorkunov E.S., Povolotskaya A.M., Zadvorkin S.M., Putilova E.A., Mushnikov A.N. The Effect of Cyclic Preloading on the Magnetic Behavior of the Hot-Rolled 08G2B Steel Under Elastic Uniaxial Tension // Research in Nondestructive Evaluation. 2021. V. 32. No. 6. P. 276—294. doi: 10.1080/09349847.2021.2002487
  9. Mushnikov A.N., Povolotskaya A.M., Zadvorkin S.M., Goruleva L.S., Putilova E.A. Effect of Elastic-Plastic Deformation by Biaxial Tension on the Magnetic Characteristics of Nickel // Defectoskopiya. 2023. No. 11. P. 32—42.
  10. Aginey R.V., Islamov R.R., Mammadova E.A. Determination of the stress-strain state of the pipeline section under pressure based on the results of the coercive force measurement // Nauka Tekhnol. Truboprovodn. Transp. Nefti Nefteprod. 2019. V. 9. No. 3. P. 284—294.
  11. Berdnik M.M., Berdnik A.G. Prospects for the use of coercimetry to assess the parameters of the stressstrain state of structures // Tekhnol. Mashinostr. 2019. No. 1. P. 37—43.
  12. Zakharov V.A., Ul’yanov A.I., Gorkunov E.S. Coercive force of ferromagnetic steels under the biaxial symmetrical tension of a material // Defectoskopiya. 2011. No. 6. P. 3—15.
  13. Novikov V.F., Sorokina S.V., Kudryashov M.E., Zakharov V.A., Ul’yanov A.I. The influence of biaxial elastic deformation on the coercive force and local remanent magnetization of construction steels // Defectoskopiya. 2010. No. 7. P. 59—68.
  14. Shulu Feng, Zhijiu Ai, Jian Liu, Jiayi He, Yukun Li, Qifeng Peng, Chengkun Li. Study on Coercivity-Stress Relationship of X80 Steel under Biaxial Stress // Advances in Materials Science and Engineering. 2022. V. 2022. Art. no. 2510505. doi: 10.1155/2022/2510505
  15. Yongjian Li, Shiping Song, Yu Dou, Tao Chen. Influence of tensile stress on the magnetic properties of ultra-thin grain-oriented electrical steel // AIP Advances. 2023. V. 13. Art. no. 025223. doi: 10.1063/9.0000468
  16. Langman R.A. Magnetic properties of mild steel under conditions of biaxial stress // IEEE Transactions on Magnetics. 1990. V. 26. Is. 4. P. 1246—1251.
  17. Hubert O., Maazaz Z., Taurines J., Crepinge R.,van den Berg F., Celada-Casero C. Influence of biaxial stress on magnetostriction — Experiments and modeling // Journal of Magnetism and Magnetic Materials. 2023. V. 568. Art. no. 170389. doi: 10.1016/j.jmmm.2023.170389
  18. Mushnikov A.N., Povolotskaya A.M., Zadvorkin S.M., Goruleva L.S., Putilova E.A. Effect of Elastic-Plastic Deformation by Biaxial Tension on the Magnetic Characteristics of Nickel // Defectoskopiya. 2023. No. 11. P. 3—16.
  19. Pearson J., Squire P.T., Maylin M.G., Gore J.G. Apparatus for magnetic measurements under biaxial stress // IEEE Transactions on magnetics. 2000. V. 36. Is. 5. P. 3599—3601.
  20. Vengrinovich Valeriy, Vintov Dmitriy, Prudnikov Andrew, Podugolnikov Pavel, Ryabtsev Vladimir. Magnetic Barkhausen Effect in Steel under Biaxial Strain/Stress: Influence on Stress Measurement // Journal of Nondestructive Evaluation. 2019. V. 38. Art. no. 52. doi: 10.1007/s10921-019-0576-7
  21. Kai Y., Enokizono M. Effect of arbitrary shear stress on vector magnetic properties of non-oriented electrical steel sheets // IEEE Transactions on magnetics. 2017. V. 53. Is. 11. P. 2002304.
  22. Kai Y., Tsuchida Y., Todaka T., Enokizono M. Influence of biaxial stress on vector magnetic properties and 2-D magnetostriction of a nonoriented electrical steel sheet under alternating magnetic flux conditions // IEEE Transactions on magnetics. 2014. V. 50. Is. 4. P. 6100204.
  23. Aydin U., Rasilo P., Martin F., Belahcen A.,Daniel L., Arkkio A. Modeling of multi-axial stress dependent iron losses in electrical steel sheets // Journal of Magnetism and Magnetic Materials. 2020. V. 504. Art. no. 166612.
  24. Aydin U., Martin F., Rasilo P., Belahcen A., Haavisto A., Singh D., Daniel L., Arkkio A. Rotational single sheet tester for multiaxial magneto-mechanical effects in steel sheets // IEEE Transactions on magnetics. 2019. V. 55. Is. 3. P. 2001810.
  25. Mitropol’skaya S.Y. Certification of Hardened Surface Layers by Magnetic and Electromagnetic Methods // Metal Science and Heat Treatment. 2013. V. 55. No. 3—4. P. 157—162.
  26. Gorkunov E.S., Subachev Y.V., Povolotskaya A.M., Zadvorkin S.M. The influence of elastic deformations on the hysteresis properties of a two-layer ferromagnet composed of components with magnetostrictions of opposite signs // Defectoskopiya. 2014. No. 8. P. 42—56.
  27. Gorkunov E.S., Zadvorkin S.M., Putilova E.A., Povolotskaya A.M., Goruleva L.S., Veretennikova I.A., Kamantsev I.S. The Application of Magnetic Structural Phase Analysis for the Diagnostics of the State of a 08X18H10T Steel—C 3 Steel Composite Material and Its Components That Were Subjected to Plastic Deformation // Defectoskopiya. 2012. No. 6. P. 30—43.
  28. Gorkunov E.S. Magnetic Evaluation of the Structural and Phase Changes in Individual Layers of Multilayer Products // Diagnostics, Resource and Mechanics of materials and structures. 2017. Is. 2. P. 6—27.
  29. Mushnikov A.N., Zadvorkin S.M., Perunov E.N., Vyskrebencev S.V., Izmajlov R.F., Vichuzhanin D.I., Soboleva N.N., Igumnov A.S. Experimental Facility for Studying the Physical Properties of Materials in a Plane Stress State // Diagnostics, Resource and Mechanics of materials and structures. 2022. Is. 4. P. 50—60.
  30. Mises R.V. Mechanik der festen Körper im plastisch-deformablen Zustand // Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1913. P. 582—592.

补充文件

附件文件
动作
1. JATS XML
2. Figure 1. Stress-strain diagrams of steels being components in the investigated composite material. Curves: 1 - steel 15; 2 - steel 12Х18Н9Т.

下载 (139KB)
3. Figure 2. Photograph of the working area of the testing machine with the double-layer cross specimen installed.

下载 (379KB)
4. Figure 3. Schematic of mounting the attachable magnetic device in the working area of the specimen at an angle α to the x-axis.

下载 (130KB)
5. Figure 4. Distribution of equivalent stresses in biaxial tension of steel 15 (a) and steel 12Х18Н9Т (b). The load on each axis is 30 kN.

下载 (527KB)
6. Figure 5. Distribution of equivalent stresses in biaxial tension of a composite specimen (a - in the layer of steel 15; b - in the layer of steel 12Х18Н9Т). The load on each axis is 50 kN.

下载 (538KB)
7. Figure 6. Effect of symmetrical biaxial stretching on the coercive force of steel 15.

下载 (380KB)
8. Figure 7. Effect of symmetrical biaxial stretching on the residual induction Br~ (a), on the maximum relative magnetic permeability (b) of steel 15.

下载 (801KB)
9. Figure 8. Effect of symmetrical biaxial tension on the coercive force of cold-rolled 12Cr18Ni9T steel. The rolling direction is horizontal.

下载 (339KB)
10. Figure 9. Effect of symmetrical biaxial stretching on the residual induction Br~ of cold-rolled 12Cr18Ni9T steel (a) and on the maximum relative magnetic permeability (b) of cold-rolled 12Cr18Ni9T steel. The rolling direction is horizontal.

下载 (719KB)
11. Figure 10. Effect of symmetrical biaxial stretching on the coercive force of the composite material “steel 15 - steel 12Х18Н9Т”. The rolling direction of 12Cr18Ni9T steel is horizontal.

下载 (422KB)
12. Figure 11. Effect of symmetrical biaxial stretching on the residual induction Br~ (a) and maximum relative magnetic permeability (b) of the composite material “steel 15 - steel 12X18N9T”. The rolling direction of 12Cr18Ni9T steel is horizontal.

下载 (765KB)
13. Figure 12: Values of coercive force Hc (a), residual induction Br~ (b) and maximum magnetic permeability μmax (c), reduced to the values of these quantities in the initial state, depending on the degree of equivalent deformations. Curves 1 - steel 15; 2 - steel 12Cr18Ni9T; 3 - composite material “steel 15 - steel 12Cr18Ni9T”. The angle ɑ is equal to 0º.

下载 (256KB)
14. Figure 13. Field dependences of differential magnetic permeability at different values of the equivalent degree of deformation. Curves 1 - steel 15; 2 - steel 12Х18Н9Т; 3 - composite material “steel 15 - steel 12Х18Н9Т”. The angle ɑ is equal to 0º.

下载 (265KB)
15. Figure 14: Dependences of maxima of field dependences of differential magnetic permeability (a) and values of fields, in which maxima are localized (b), on the degree of equivalent deformations. Curves 1 - steel 15; 2 - steel 12Х18Н9Т; 3 - composite material “steel 15 - steel 12Х18Н9Т”. The angle ɑ is equal to 0º.

下载 (182KB)

版权所有 © Russian Academy of Sciences, 2024