Image restoration of reflectors by the method of digital aperture focusing in thick-walled pipes of small diameter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In ultrasonic inspection of pipes of various diameters using antenna arrays and arrays, two technologies of reflector image reconstruction are widely used: antenna array focusing technology (PAUT) and digital aperture focusing (DAF) technology. If the tube diameter is larger than a hundred wavelengths, the DAF method can be used to reconstruct the reflector image by taking into account several reflections from the boundaries, assuming that the object of inspection is flat. In this case, the errors in the formation of DAF-image of reflectors will be insignificant. However, if the pipe diameter is several tens of wavelengths and the wall thickness is about half of the pipe diameter, then in this case the geometry of the inspection object must be taken into account to obtain a high-quality DAF-image of the reflectors. The paper considers the peculiarities of image formation at registration of echo signals by an antenna array or matrix, when scanning both on the external and internal surfaces of the object of control. In numerical and modeling experiments it is shown that both antenna array and antenna array can be used to obtain high-quality DAF-image of reflectors when scanning along the outer surface of a thick-walled pipe of small diameter. This is due to the presence of the effect of physical focusing of the ultrasonic field. But when scanning along the inner surface of a thick-walled tube of small diameter, because of the defocusing effect, it is necessary to register echoes with an antenna array to restore the image of reflectors.

Full Text

Restricted Access

About the authors

E. G. Bazulin

Scientific and Production Center ECHO+ LLC

Author for correspondence.
Email: bazulin@echoplus.ru
Russian Federation, 123458 Moscow, Tvardovsky str., 8, Strogino Technopark

References

  1. Advances in Phased Array Ultrasonic Technology Applications. Publisher: Waltham, MA: Olympus NDT, 2007. URL: https://www.olympus-ims.com/en/books/pa/pa-advances/ (дата обращения: 07.07.2023).
  2. Воронков В.А., Воронков И.В., Козлов В.Н., Самокрутов А.А., Шевалдыкин В.Г. О применимости технологии антенных решеток в решении задач ультразвукового контроля опасных производственных объектов // В мире неразрушающего контроля. 2011. № 1. С. 64—70.
  3. Базулин Е.Г. Сравнение систем для ультразвукового неразрушающего контроля, использующих антенные решётки или фазированные антенные решётки // Дефектоскопия. 2013. № 7. С. 51—75.
  4. ISO 23865:2021. Non-destructive testing – Ultrasonic testing – General use of full matrix capture/total focusing technique (FMC/TFM) and related technologies. URL:https://www.iso.org/standard/78034.html (дата обращения: 28.07.2024).
  5. Ковалев А.В., Козлов В.Н., Самокрутов А.А., Шевалдыкин В.Г., Яковлев Н.Н. Импульсный эхо-метод при контроле бетона. Помехи и пространственная селекция // Дефектоскопия. 1990. № 2. С. 29—41.
  6. Научно-производственная компания «Акустические Контрольные Системы»: Дефектоскоп А1550 IntroVisor: офиц. сайт: URL: https://acsys.ru/vyisokochastotnyij-ultrazvukovoj-defektoskop-tomograf-a1550-introvisor/ (дата обращения: 23.07.2024).
  7. Holmes C., Drinkwater B.W., Wilcox P.D. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation // NDT&E International. 2005. V. 38. P. 701—711.
  8. Kang S., Lee J., Chang J.H. Effectiveness of synthetic aperture focusing and coherence factor weighting for intravascular ultrasound imaging // Ultrasonics. 2021. V. 113. P. 106364. doi: 10.1016/j.ultras.2021.106364
  9. Gauthier Baptiste, Painchaud Guillaume, Le Duff Alain, Belanger Pierre. Lightweight and Amplitude-Free Ultrasonic Imaging Using Single-Bit Digitization and Instantaneous Phase Coherence // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2022. P. 1—1. ISSN 1525-8955. doi: 10.1109/TUFFC.2022.3163621
  10. Camacho Jorge, Fritsch Carlos, Fernandez-Cruza Jorge, Parrilla Montserrat. Phase Coherence Imaging: Principles, applications and current developments // Proceedings of Meetings on Acoustics. September 2019. V. 38 (1). P. 055012. doi: 10.1121/2.0001201. URL: https://asa.scitation.org/doi/abs/10.1121/2.0001201 (дата обращения: 28.07.2024).
  11. Базулин Е.Г. Ультразвуковой контроль сварных соединений трубопровода типа Ду800. Часть 1. Восстановление изображения отражателей методом ЦФА // Дефектоскопия. 2017. № 3. С. 12—26.
  12. Chen T., Du Q., Li W., Sheng S., Zhou H. Ultrasonic Imaging Detection of Welding Joint Defects of Pressure Pipeline Based on Phased Array Technology / In 2023 International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII), 2023. Melbourne, Australia. P. 375—379. doi: 10.1109/ICMIII58949.2023.00078
  13. Hampson Rory, Zhang Dayi, Gachagan Anthony, Dobie Gordon. Modelling and characterisation ultrasonic phased array transducers for pipe inspections. September 2022 // International Journal of Pressure Vessels and Piping. V. 200 (7). P. 104808. doi: 10.1016/j.ijpvp.2022.104808
  14. Schmerr L.W. Jr. Fundamentals of Ultrasonic Nondestructive Evaluation. A Modeling Ap-proach. Second Edition. Springer. 2016. 492 p. doi: 10.1007/978-3-319-30463-2
  15. Крохмаль А.А., Николаев Д.А., Цысарь С.А., Сапожников О.А. Создание эталонной плоской ультразвуковой волны в жидкости с помощью плоского пьезоэлектрического преобразователя большого волнового размера // Акуст. журн. 2020. Т. 66. № 5. С. 475—488.
  16. Kang S., Lee J., Chang J. H. Effectiveness of synthetic aperture focusing and coherence factor weighting for intravascular ultrasound imaging // Ultrasonics. 2021. V. 113. P. 106364. doi: 10.1016/j.ultras.2021.106364
  17. Červený V. Seismic ray theory. New York: Cambridge University Press, 2001. 713 p.
  18. Бабич В.М., Киселев А.П. Упругие волны. Высокочастотная теория. СПб.: БХВ-Петербург, 2014. C. 320.
  19. Moon S., Kang T., Han S., Kim K.-M., Jin H.-H., Kim S.-W., Kim M., Seo H. FEA-Based Ultrasonic Focusing Method in Anisotropic Media for Phased Array Systems // Appl. Sci. 2021. No. 11. P. 8888. doi: 10.3390/app11198888
  20. Kalkowski M.K., Lowe M.J.S., Samaitis V., Schreyer F., Robert S. Weld map tomography for determining local grain orientations from ultrasound // Proc. R. Soc. 2023. A 479. P. 20230236. https://doi.org/10.1098/rspa.2023.0236.
  21. Борн М., Вольф Э. Основы оптики / Пер. с англ. Изд. 2, испр. М.: Наука, 1973. 720 с.
  22. Фирма EXTENDE: офиц. сайт URL: https://www.extende.com/ndt (дата обращения: 11.05.2024).
  23. Научно-производственный центр «ЭХО+»: офиц. сайт URL: https://echoplus.ru/ (дата обращения: 11.05.2024).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Toward the calculation of trajectories in a thick-walled, small-diameter pipe.

Download (459KB)
3. Figure 2. Toward calculation of the trajectory at double reflection from the pipe wall boundaries (point ri is closer to the reader than point rtrm).

Download (304KB)
4. Figure 3. CFA images of the sphere reconstructed from acoustic patterns using the antenna array: TdT (a); TdTT (b); TTdTT (c).

Download (502KB)
5. Figure 4. Sphere images reconstructed from acoustic patterns using the antenna array: TdT (a); TdTT (b); TTdTT (c).

Download (444KB)
6. Figure 5. CFA image of the sphere when using the antenna array using the TdT acoustic scheme (a); CFA-CF image considering the coherence factor (b).

Download (330KB)
7. Figure 6. CFA image of the sphere using the antenna array by TdT acoustic scheme (a); CFA-CF image considering the coherence factor (b).

Download (354KB)
8. Figure 7. Photograph of a thick-walled tube, antenna array on a prism clamped in the clamp and positioned on the step side.

Download (835KB)
9. Figure 8. CFA image of the groove using the TTdTT acoustic scheme (a); CFA-CF image considering the coherence factor (b) when the antenna array is mounted on the step side.

Download (508KB)
10. Figure 9. CFA image of the groove by TTdTT acoustic scheme when the die is installed from the cone side: B-type view (a); D-type view (b).

Download (711KB)

Copyright (c) 2024 Russian Academy of Sciences