Infrared Thermographic Diagnostics of Wood Fire Resistance under Combined Thermal Effect Conditions from a Ground Fire Front and Firebrands

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experiments were conducted on certain types of combustible building materials and wood-based structures to determine the interaction between firebrands and forest fuel (FF). Using non-contact IR diagnostic methods in narrow spectral ranges of infrared wavelengths, the heat flux values generated by firebrands and the temperature field of the most heat-stressed sections of the structures under study were determined. Using a JADE J530SB thermal imager with an optical filter of 2,5—2,7 m, temperatures in the range 310—1500 K were measured in the infrared region. In order to interpret the recorded emission from the test sample, calibrations supplied by the narrowband optical filter manufacturer were used.

Full Text

Restricted Access

About the authors

D. P. Kasymov

National Research Tomsk State University; National Research Tomsk Polytechnic University

Author for correspondence.
Email: denkasymov@gmail.com
Russian Federation, Tomsk; Tomsk

M. V. Agafontsev

National Research Tomsk State University

Email: kim75mva@gmail.com
Russian Federation, Tomsk

V. A. Perminov

National Research Tomsk Polytechnic University

Email: perminov@tpu.ru
Russian Federation, Tomsk

References

  1. Suzuki S., Brown A., Manzello S.L., Suzuki J., Hayashi Y. Firebrands generated from a full-scale structure burning under well-controlled laboratory conditions // Fire Saf. J. 2014. V. 43—51. P. 43—51.
  2. Vavilov V.P. Thermal nondestructive testing: development of conventional directions and new trends (a review) // Rus. J. NDT. 2023. V. 59. No. 6. P. 702—723.
  3. O’Brien J.J., Loudermilk E.L., Hornsby B., Hudak A.T., Bright B.C., Dickinson M.B., Hiers J.K., Teske C., Ottmar R.D. High-resolution infrared thermography for capturing wildland fire behaviour: RxCADRE 2012 // Int. J. of Wildland Fire. 2016. V. 25. P. 62—75.
  4. Rios O., Pastor E., Valero M.M., Planas E. Short-term fire front spread prediction using inverse modelling and airborne infrared images // Int. J. of Wildland Fire. 2016. V. 25. P. 1033—1047.
  5. Filkov Alexander I., Tihay-Felicelli Virginie, Masoudvaziri Nima, Rush David, Valencia Andres, Wang Yu, Blunck David L., Valero Mario Miguel, Kempna Kamila, Smolka Jan, De Beer Jacques, Campbell-Lochrie Zakary, Centeno Felipe Roman, Ibrahim Muhammad Asim, Lemmertz Calisa Katiuscia, Tam Wai Cheong. A review of thermal exposure and fire spread mechanisms in large outdoor fires and the built environment // Fire Saf. J. 2023. V. 140. P. 103871.
  6. Sofan P., Bruce D., Jones E., Marsden J. Detecting peatland combustion using shortwave and thermal infrared landsat-8 data // Advan. in Forest Fire Res. 2018. P. 969—979.
  7. Bearinger Elias D., Hodges Jonathan L., Yang Fengchang, Rippe Christian M., Lattimer Brian Y. Localized heat transfer from firebrands to surfaces // Fire Saf. J. 2021. V. 120. P. 103037.
  8. Caton S.E., Hakes R.S.P., Gorham D.J., Zhou A., Gollner M.J. Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions // Fire Technol. 2017. V. 53. P. 429—473.
  9. Kasymov D., Agafontsev M., Perminov V., Martynov P., Reyno V., Loboda E. Experimental Investigation of the Effect of Heat Flux on the Fire Behavior of Engineered Wood Samples // Fire. 2020. V. 3. P. 61.
  10. Aydın T.Y. Temperature Influenced Anisotropic Elastic Parameters of Red Pine // Russ. J. Nondestruct. Test. 2022. V. 58. P. 548—562.
  11. Manzello S.L., Suzuki S., Gollner M.J., Fernandez-Pello A.C. Role of firebrand combustion in large outdoor fire spread // Prog. Energy Combust. Sci. 2020. V. 76. P. 100—801.
  12. Suzuki S., Manzello S.L. Ignition vulnerabilities of combustibles around houses to firebrand showers: further comparison of experiments // Sustainability. 2021. V. 13. P. 21—36.
  13. Manzello S.L., Blanchi R., Gollner M.J., Gorham D., McAllister S., Pastor E., Planas E., Reszka P., Suzuki S. Summary of workshop large outdoor fires and the built environment // Fire Saf. J. 2018. V. 100. P. 76—92.
  14. Bartlett A.I., Hadden R.M., Bisby L.A. A review of factors affecting the burning behaviour of wood for application to tall timber construction // Fire Technol. 2019. V. 55. P. 1—49.
  15. Kwon B., Liao Y.T. Ignition propensity of structural materials exposed to multiple firebrands in wildland-urban interface (WUI) fires: effects of firebrand distribution and ambient wind / Conf. Spr. Techn. Meet. Cent. St. Sec. Comb. Inst. at: Detroit, Michigan. 2022.
  16. Baldwin J.H., Sunderland P.B. Ratio pyrometry of emulated firebrand streaks // Fire Saf. J. 2023. V. 136. P. 103746.
  17. Abul-Huda Yasin M., Bouvet Nicolas. Thermal dynamics of deposited firebrands using phosphor thermometry // Proc. Comb. Ins. 2021. V. 38. No. 3. P. 4757—4765.
  18. Lauterbach Alec, Lee Sangkyu, De Beer Jacques, Stoliarov Stanislav I., Sunderland Peter B., Gollner Michael J., Filkov Alexander I., Horn Gavin P. Ignition and combustion behavior of pressure treated wood and wood-plastic composite exposed to glowing firebrand piles: Impact of air flow velocity, firebrand coverage density and pile orientation // Fire Saf. J. 2024. V. 147. P. 104198.
  19. Kasymov D.P., Perminov V.V., Reyno V.V., Filkov A.I., Loboda E.L. An experimental apparatus for firebrand generation applied to wildland fire spread // Russ. Phys. J. 2017. V. 60. № 12/2. P. 107—112.
  20. Kasymov D.P., Perminov V.V., Filkov A.I., Agafontsev M.V., Reyno V.V., Loboda E.L. Generator of firebrands for poorly ventilated areas / Patent of Russia 199698 (publ.15.09.2020).
  21. Grishin A.M., Filkov A.I., Loboda E.L., Reyno V.V., Kozlov A.V., Kuznetsov V.T., Kasymov D.P., Andreyuk S.M., Ivanov A.I., Stolyarchuk N.D. A field experiment on grass fire effects on wooden constructions and peat layer ignition // Int. J. Wild. Fire. 2014. V. 23. P. 445—449.
  22. Kasymov D.P., Agafontsev M.V., Tarakanova V.A., Loboda E.L., Martynov P.S., Orlov K.E., Reyno V.V. Effect of wood structure geometry during firebrand generation in laboratory scale and semi-field experiments // J. of Phys.: Conf. S. 2021. V. 1867.
  23. Kasymov D.P., Agafontsev M.V., Perminov V.V., Loboda E.L., Loboda Yu.A., Reino V.V., Orlov K.E. Ignition resistance of wood building structures exposed to a firebrand shower // Combust. Explos. Shock Waves. 2023. V. 59. P. 206—214.
  24. Arruda M.R.T., Cantor P., Bicelli A., Branco F. Thermal reaction of firebrand accumulation in construction materials // Case Stud. Constr. Mater. 2024. V. 20. P. e02985.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photo of the experimental stand just before the experiment

Download (535KB)
3. Fig. 2. Installation of burning and smouldering particles generation [19]

Download (617KB)
4. Fig. 3. Instantaneous thermogram of the process of flame exposure on the model fence structure

Download (547KB)
5. Fig. 4. Curves of distribution of the surface temperature field of the considered wood samples in time: a, b - solid fence; c, d - blown type fence (stakes)

Download (433KB)
6. Fig. 5. Thermogram of burning development of pine needles near the surface of wooden fence

Download (357KB)
7. Fig. 6. Change of flame temperature during pine needles burning: a - experiment with a solid enclosure; b - blown type enclosure

Download (179KB)

Copyright (c) 2024 Russian Academy of Sciences